ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (158,041)
  • Springer Nature  (36,520)
  • American Institute of Physics  (34,697)
  • American Geophysical Union  (9,323)
  • 2025-2025  (2)
  • 2020-2023  (646)
  • 1975-1979  (204,134)
  • 1950-1954  (33,799)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2023-05-24
    Description: An estimate of average river particulate matter (RPM) composition was bàsed on analyses of more than 40 elements in the Amazon, Congo, Ganges, Magdalena, Mekong, Parana and Orinoco rivers, to which were added literature data for 13 other major world rivers, covering the whole spectrum of morphoclimatic features. Geographic variations of major elements in RPM are mostly linked to weathering types and to the balance between weathering rate and river transport. As a result of chemical erosion, Al, Fe and Ti are enriched in RPM with respect to the average parent rock, while Na, Ca, Mg and Sr are strongly depleted. These figures are directly related to the relative importance of dissolved and particulate transport in rivers; this has been computed for each of 40 elements. In order to study weathering on a global scale, the total observed elemental fluxes (dissolved + particulate) have been computed and compared to theoretical ones. The latter were derived from the elemental content in the average parent rock and the total quantity of weathered material, computed from the Al ratio in RPM and in parent rock. Observed and theoretical fluxes are balanced for the less mobilized elements (rare earths, Co, Cr, Cs, Fe, Mn, Rb, Si, Th, Ti, U and V) for which no enrichment relative to Al is noted in RPM, and for B, Ba, Ca, K, Mg, Na, Sr which are relatively depleted in RPM due to their high dissolved transport. Additional fluxes have been found for Br, Sb, Pb, Cu, Mo, Zn and are possible also for Ni and P. This is reflected by marked enrichments in RPM relative to Al for the poorly or moderately dissolved transports (Pb, Cu, Zn). Several hypotheses involving either the natural origin (volcanic dust, marine aerosols, geochemical fractionation) or the artificial origin (worldwide pollution) are discussed to explain these discrepancies, assuming river transport and weathering either to be in a steady state on a global scale or not. However, none of them can fully account for these additional fluxes. It is most likely that these excesses have multiple origins, anthropogenic or natural or both. The comparison between RPM and deep-sea clay compositions emphasizes the prime influence of river input on oceanic sedimentation of Si, Al, Fe, Ti, lanthanides, Sc, Rb, V, etc. A few elements such as Zn, Sb, occur in excess in RPM as compared to deep-sea clays; in order to balance this excess, a remobilization of these elements out of the sediment can be considered. Finally, the enrichment of Co, Cu, Mn and Ni in deep-sea clays compared to RPM is discussed and attributed to several sources and processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-27
    Description: The characterization of the fling-step represents a challenging task due to the shortage of near-source records with permanent tectonic displacement and the limitation in retrieving the fling-amplitude from accelerometric waveforms. In recent years, innovative ground-motion processing techniques have been developed for a more accurate estimation of both fling-displacements and spectral displacements in contrast to traditional bandpass filtering, although their application is still unusual. In this paper, we exploit the newly released dataset of the Near-Source Strong-motion records (NESS2) uniformly processed with the extended BASeline COrrection technique (eBASCO), against which we propose: (1) a new empirically-based ground motion model (GMM) for the prediction of the fling-step, and (2) an adjustment factor of the spectral displacements predicted by a reference GMM to account for the contribution of the fling-step at long periods. Such models are in agreement with observations and existing GMMs, and thus could be advantageously employed in seismic hazard analyses.
    Description: Published
    Description: 107294
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-12-27
    Description: The 1915, Mw6.7, Fucino earthquake is one of the most destructive events occurred in the central-southern Apennines (Central Italy) in pre-instrumental era, involving normal faulting in a deep alluvial basin. This study shows the application of the empirical non-ergodic approach (NESK method) for mapping ground shaking related to this historical event, taking into account the regional features of source, propagation and site contributions. Corrections of the source-region and spatially correlated maps of site and path residuals are combined with median prediction at the reference rock (i.e. without site amplification) to generate spatially variable ground shaking and associated variability in terms of peak ground acceleration and spectral ordinates at vibration periods from 0.01s to 2s. The method captures the main spatial non-stationarities and anisotropies of the shaking fields produced by this earthquake in and around the Fucino basin. In particular, we obtain patterns of seismic motion quite in accordance with the results of other methods and the macroseismic intensity field. Marked amplifications of the shaking in the long-periods are also captured, due to the coupling of 3D site effects, especially in the deeper portion of the basin, with propagation effects mainly focused towards the eastern part of the fault. These results confirm that the non-ergodic shaking scenarios from NESK can provide useful indications even in the case of very complex seismological and geological contexts, such as in the case of strong events in deep sedimentary basins.
    Description: Published
    Description: 107622
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-12-27
    Description: Magmas often experience severe disequilibrium conditions during their migration through the Earth's crust and the subsequent emplacement on its surface. During their transport, magmas are subjected to a wide range of cooling (q) and deformation rates (), generating physico-chemical perturbations in the magmatic system able to inhibit or promote crystallization processes. Quantifying the magnitude and timescale of kinetic effects is essential to correctly constrain the rheological evolution of magmas and their ability to flow. Here we present a suite of cooling deformation experiments (CDE) conducted on a basalt from Mt. Etna (Sicily, Italy) to disentangle and model the concurrent effects of q (from 1 to 10 °C/min) and (from 1 to 10 s−1) on the rheology of the system. The analysis of the temporal evolution of viscosity indicates that both q and strongly affect the onset of crystallization and achievement of a rheological cut-off over time, which represents the steep viscosity increase responsible for inhibiting magma flow. Both these rheological thresholds occur at lower T and earlier in time with increasing q, as well as at higher T and earlier in time with increasing . To reproduce the observed effects of crystallization on the apparent viscosity, we adopt a stretched exponential function that identifies two main crystallization regimes: i) a first shear-induced crystallization regime, characterized by a gentle viscosity increase and ii) a second cooling-dominated regime, marked by a steeper viscosity increase. The relative extent of these crystallization regimes strictly depends on the interplay between q and on the crystallization kinetics and suggest a first order control of q and a subordinate role of .
    Description: Published
    Description: 117725
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-12-24
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(7), (2022): e2021JC018333, https://doi.org/10.1029/2021JC018333.
    Description: As part of a project focused on the coastal fisheries of Isla Natividad, an island on the Pacific coast of Baja California, Mexico, we conducted a 2-1/2 year study of flows at two sites within the island's kelp forests. At one site (Punta Prieta), currents are tidal, whereas at the other site (Morro Prieto), currents are weaker and may be more strongly influenced by wind forcing. Satellite estimates of the biomass of the giant kelp (Macrocystis pyrifera) for this period varied between 0 (no kelp) and 3 kg/m2 (dense kelp forest), including a period in which kelp entirely was absent as a result of the 2014–2015 “Warm Blob” in the Eastern Pacific. During this natural “deforestation experiment”, alongshore velocities at both sites when kelp was present were substantially weaker than when kelp was absent, with low-frequency alongshore currents attenuated more than higher frequency ones, behavior that was the same at both sites despite differences in forcing. The attenuation of cross-shore flows by kelp was less than alongshore flows; thus, residence times for water inside the kelp forest, which are primarily determined by cross-shore velocities, were only weakly affected by the presence or absence of kelp. The flow changes we observed in response to changes in kelp density are important to the biogeochemical functioning of the kelp forest in that slower flows imply longer residence times, and, are also ecologically relevant in that reduced tidal excursions may lead to more localized recruitment of planktonic larvae.
    Description: The work we describe here was supported by NSF grants DEB 1212124, OCE 1416934, OCE 1736830, and OCE 2022927, by an equipment grant from the Kuwait Foundation for the Advancement of Sciences, and through grants from the Marisla Foundation, Packard Foundation, and Walton Family Foundation.
    Description: 2022-12-24
    Keywords: Kelp ; Tides ; Coastal circulation ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-23
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(12), (2022): e2021GL097598, https://doi.org/10.1029/2021GL097598.
    Description: The ocean is inhomogeneous in hydrographic properties with diverse water masses. Yet, how this inhomogeneity has evolved in a rapidly changing climate has not been investigated. Using multiple observational and reanalysis datasets, we show that the spatial standard deviation (SSD) of the global ocean has increased by 1.4 ± 0.1% in temperature and 1.5 ± 0.1% in salinity since 1960. A newly defined thermohaline inhomogeneity index, a holistic measure of both temperature and salinity changes, has increased by 2.4 ± 0.1%. Climate model simulations suggest that the observed ocean inhomogeneity increase is dominated by anthropogenic forcing and projected to accelerate by 200%–300% during 2015–2100. Geographically, the rapid upper-ocean warming at mid-to-low latitudes dominates the temperature inhomogeneity increase, while the increasing salinity inhomogeneity is mainly due to the amplified salinity contrast between the subtropical and subpolar latitudes.
    Description: This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (grant XDB42000000 and XDB40000000), the National Key R&D Program of China (2017YFA0603200), and the Shandong Provincial Natural Science Foundation (ZR2020JQ17), and the U.S. National Science Foundation Physical Oceanography Program (OCE- 2048336).
    Description: 2022-12-23
    Keywords: Global ocean ; Temperature ; Salinity ; Spatial inhomogeneity ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-12-22
    Description: This chapter aims at introducing the reader to general concepts about the main forcings of the Mediterranean Sea, in terms of exchanges through the Strait of Gibraltar, and air-sea exchanges of heat, freshwater, and momentum. These forcings are also responsible for the peculiar characteristics of Mediterranean water masses. Therefore, the chapter continues with giving a general explanation on water mass analysis, and then it describes the properties and vertical and horizontal distributions of the main Mediterranean water masses. To conclude, the reader is introduced to the use of other (biogeochemical, and chemical) tracers of water masses, with a focus on the Mediterranean Sea.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-12-22
    Description: The geological carbon cycle has played a key role in controlling climate throughout Earth’s history. For the last ∼ 3 billion years plate tectonics has driven subduction. Subducted slabs have transported CO_2 from the lithosphere, hydrosphere, and atmosphere into the Earth, from where it may be released back to the surface through processes such as arc volcanism or can be stored in the deep interior over geological time. Carbonate-bearing sediments and basalts of altered oceanic crust are the primary media by which carbon is subducted. Therefore, quantifying the depth and amount of CO_2 released from different carbonate-bearing lithologies during subduction is fundamental to understanding whether CO_2 is recycled through arc volcanism or buried in the mantle. The magnitude of CO_2 released from subducting slabs at fore- and sub-arc depths is controlled by processes including ocean crust alteration (i.e., carbonation), metamorphic decarbonation, carbonate dissolution and slab-melting. However, the relative contribution of these processes to overall slab decarbonation is still debated, and will be complex given the variety of sedimentary lithologies and subduction geodynamics. Here, we present a global arc-by-arc lithology-specific analysis of the magnitude of slab CO_2 released purely by metamorphic decarbonation of carbonate-bearing sediment and basalt during subduction of altered oceanic crust, using a thermodynamically rigorous model. We find that metamorphic decarbonation is highly efficient in low carbonate sediments, such as carbonated clay, and in carbonated basalts of altered oceanic crust, causing all of their CO_2 to be removed. Sediments with medium and higher carbonate contents, such as chalk and limestone, are only partially decarbonated, but the combination of metamorphic decarbonation and carbonate dissolution promotes efficient carbon loss. Together they can explain observed magmatic CO_2 emissions in carbonate-rich arcs. Warm slabs, such as Mexico and Cascadia, produce complete metamorphic decarbonation of carbonate minerals beneath fore-arcs. Under more common cold and intermediate thermal regimes metamorphic decarbonation of carbonate minerals occurs at depths between ∼ 80 and 170 km ( ∼ 2.3 to 5.5 GPa) promoting CO_2 input into the mantle sources of volcanic arcs. Overall, our results demonstrate that sub-arc decarbonation is typically considered an important potential source of slab-derived CO_2 , which needs to be considered together with carbonate dissolution to explain observed volcanic CO_2 emissions. In many arcs the modelled CO_2 flux from sediment and basalts of altered oceanic crust into the wedge exceeds the observed CO 2 output suggesting that the mantle wedge and arc lithosphere may sequester some CO_2 .
    Description: Published
    Description: 117945
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-12-16
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(4), (2021): e2020JC016757, https://doi.org/10.1029/2020JC016757.
    Description: The along-shelf circulation in the Northwest Atlantic (NWA) Ocean is characterized by an equatorward flow from Greenland's south coast to Cape Hatters. The mean flow is considered to be primarily forced by freshwater discharges from rivers and glaciers while its variability is driven by both freshwater fluxes and wind stress. In this study, we hypothesize and test that the wind stress is important for the mean along-shelf flow. A two-layer model with realistic topography when forced by wind stress alone simulates a circulation system on the NWA shelves that is broadly consistent with that derived from observations, including an equatorward flow from Greenland coast to the Mid-Atlantic Bight (MAB). The along-shelf sea-level gradient is close to a previous estimate based on observations. The along-shelf flows exhibit strong seasonal variations with along-shelf transports being strong in fall/winter and weak in spring/summer, consistent with available observations. It is found that the NWA shelf circulation is affected by both wind-driven gyres through their western boundary currents and wind-stress forcing on the shelf especially along the coasts of Newfoundland and Labrador. The local wind stress forcing has more direct impacts on flows in shallower waters along the coast while the open-ocean gyres tend to affect the circulations along the outer shelf. Our conclusion is that wind stress is an important forcing of the main along-shelf flows in the NWA. One objective of this study is to motivate further examination of whether wind stress is as important as freshwater forcing for the mean flow.
    Description: Both Yang and Chen are also supported by NOAA Climate Program Office's Climate Variability and Prediction Program under grant NA20OAR4310398. JY is supported by Woods Hole Oceanographic Institution (WHOI) W. V. A. Clark Chair for Excellence in Oceanography and NSF Ocean Science Division under grant OCE1634886. Chen is supported by WHOI Independent Research and Development award.
    Description: 2021-09-30
    Keywords: Cross-shelf interactions ; Northwest Atlantic Ocean ; Numerical models ; Ocean dynamics ; Shelf flows ; Wind stress forcing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-12-14
    Description: New constraints were set on the age of marine deposits in the Pontine Plain and of the related sea level indicators on the Tyrrhenian Sea coast of central Italy by twelve new 40Ar/39Ar dates on detrital sanidine from these deposits. By combining a new geomorphologic analysis and previous morpho-pedostratigraphic studies with these geochronological constraints we reconstructed the geometry of four marine terraces and correlated these with the highstands during the marine isotopic stages (MIS) 9.3, 7.5, 5.5 and 5.3. Results point to a progressive tilting of the terraces, the elevation increasing from the SE to the NW due to differential tectonic uplift that occurred over the last 300 ka. We identified a MIS 9 sea level at 30 - 25 m asl in the northwestern sector, whereas the MIS 7.5 sea level reached a maximum of 24 m asl in the NWand descended to 18 m asl in the central sector. Moderate tilting affected the MIS 5.5 sea level, with an elevation of 12 to 9.5 m asl in between the Anzio and Circeo headlands. Finally, an undeformed MIS 5.3 sea level at ca. 3 m asl is indicated throughout this coastal reach, confirming previous data suggesting a much higher absolute sea level during this highstand with respect to the d18O-derived predicted level.
    Description: Published
    Description: 107866
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Marine terraces ; MIS 5 sea level ; Pontine Plain ; Tyrrhenian Sea ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...