ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (12,384)
  • 2015-2019  (12,384)
  • 1945-1949
  • 2017  (12,384)
Collection
Years
  • 2015-2019  (12,384)
  • 1945-1949
Year
  • 1
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Geophysical Journal International, Oxford University Press, 208(1), pp. 449-467, ISSN: 1365-246X
    Publication Date: 2016-12-03
    Description: The Mozambique Ridge, a prominent basement high in the southwestern Indian Ocean, consists of four major geomorphological segments associated with numerous phases of volcanic activity in the Lower Cretaceous. The nature and origin of the Mozambique Ridge have been intensely debated with one hypothesis suggesting a Large Igneous Province origin. High-resolution seismic reflection data reveal a large number of extrusion centres with a random distribution throughout the southern Mozambique Ridge and the nearby Transkei Rise. Intra-basement reflections emerge from the extrusion centres and are interpreted to represent massive lava flow sequences. Such lava flow sequences are characteristic of eruptions leading to the formation of continental and oceanic flood basalt provinces, hence supporting a Large Igneous Province origin of the Mozambique Ridge. We observe evidence for widespread post-sedimentary magmatic activity that we correlate with a southward propagation of the East African Rift System. Based on our volumetric analysis of the southern Mozambique Ridge we infer a rapid sequential emplacement between ~131 Ma and ~125 Ma, which is similar to the short formation periods of other Large Igneous Provinces like the Agulhas Plateau.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Marine Plankton, Marine Plankton, Oxford University Press, 704 p., ISBN: 9780199233267
    Publication Date: 2017-05-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Marine Plankton, Marine Plankton, Oxford University Press, 704 p., ISBN: 9780199233267
    Publication Date: 2017-04-28
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Marine Plankton, Marine Plankton, Oxford University Press, 704 p., ISBN: 9780199233267
    Publication Date: 2017-05-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology and Evolution 34 (2017): 1890-1901, doi:10.1093/molbev/msx125.
    Description: The highly conserved ADAR enzymes, found in all multicellular metazoans, catalyze the editing of mRNA transcripts by the deamination of adenosines to inosines. This type of editing has two general outcomes: site specific editing, which frequently leads to recoding, and clustered editing, which is usually found in transcribed genomic repeats. Here, for the first time, we looked for both editing of isolated sites and clustered, non-specific sites in a basal metazoan, the coral Acropora millepora during spawning event, in order to reveal its editing pattern. We found that the coral editome resembles the mammalian one: it contains more than 500,000 sites, virtually all of which are clustered in non-coding regions that are enriched for predicted dsRNA structures. RNA editing levels were increased during spawning and increased further still in newly released gametes. This may suggest that editing plays a role in introducing variability in coral gametes.
    Description: This work was supported by the Australian Research Council (to PK), the European Research Council (grant 311257), the I-CORE Program of the Planning and Budgeting Committee in Israel (grants 41/11 and 1796/12), and the Israel Science Foundation (1380/14).
    Keywords: RNA editing ; ADAR ; Evolution ; Coral
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2016. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 208 (2017): 1026-1042, doi:10.1093/gji/ggw435.
    Description: In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the subseafloor conductivity that is assumed to be isotropic. The deep water (ocean layer electrically much thicker than the overburden) seafloor EM response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a half-space, or a stronger and faster response. For an ocean whose electrical thickness is comparable to or much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. These transitions can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire subseafloor resistivity structure with the sea surface. A stronger and faster response occurs when guided energy flow is dominant, while a weaker and slower response occurs when the air interaction is dominant. However, at intermediate offsets for some models, the air interaction can partially or fully reverse the direction of energy flux in the reservoir layer toward rather than away from the source, resulting in a stronger and slower response. The Fréchet derivatives are dominated by preferential sensitivity to the reservoir layer conductivity for all water depths except at high frequencies, but also display a shift with offset from the galvanic to the inductive mode in the underburden and overburden due to the interplay of guided energy flow and the air interaction. This means that the sensitivity to the horizontal conductivity is almost as strong as to the vertical component in the shallow parts of the subsurface, and in fact is stronger than the vertical sensitivity deeper down. However, the sensitivity to horizontal conductivity is still weak compared to the vertical component within thin resistive regions. The horizontal sensitivity is gradually decreased when the water becomes deep. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field.
    Keywords: Electrical properties ; Marine electromagnetics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bioscience 67 (2017): 760–768, doi:10.1093/biosci/bix059.
    Description: As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances.
    Description: We would like to thank generous support from International Fund for Animal Welfare, the Bureau of Ocean Energy, and the Oak Foundation for funding support for the telemetry devices.
    Keywords: Abundance estimation ; Gray seals (Halichoerus grypus) ; Cape Cod ; Remote sensing ; Earth observation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2017. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 211 (2017): 1046–1061, doi:10.1093/gji/ggx360.
    Description: In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically-polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the sub-seafloor conductivity that is assumed to be transversely anisotropic, with a vertical-to-horizontal resistivity ratio of 3:1. For an ocean whose electrical thickness is comparable to that of the overburden, the seafloor electromagnetic response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a halfspace, or a stronger and faster response, and displays little to no evidence for the air interaction. For an ocean whose electrical thickness is much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets, and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. By comparison to the isotropic case with the same horizontal conductivity, transverse anisotropy stretches the Poynting vector and the electric field response from a thin resistive layer to much longer offsets. These phenomena can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire sub-seafloor resistivity structure with the sea surface. The Fréchet derivatives are dominated by preferential sensitivity to the vertical conductivity in the reservoir layer and overburden at short offsets. The horizontal conductivity Fréchet derivatives are weaker than to comparable to the vertical derivatives at long offsets in the substrate. This means that the sensitivity to the horizontal conductivity is present in the shallow parts of the subsurface. In the presence of transverse anisotropy, it is necessary to go to higher frequencies to sense the horizontal conductivity in the overburden as compared to an isotropic model with the same horizontal conductivity. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field.
    Description: This work was supported at WHOI by an Independent Research and Development award, and by the Walter A. and Hope Noyes Smith Chair for Excellence in Oceanography.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-06-20
    Description: A major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry, and to a lesser extent satellite altimetry, is the poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA). Although much progress has been made in consistently modeling the ice-sheet evolution throughout the last glacial cycle, as well as the induced bedrock deformation caused by these load changes, forward models of GIA remain ambiguous due to the lack of observational constraints on the ice sheet's past extent and thickness and mantle rheology beneath the continent. As an alternative to forward-modeling GIA, we estimate GIA from multiple space-geodetic observations: Gravity Recovery and Climate Experiment (GRACE), Envisat/ICESat and Global Positioning System (GPS). Making use of the different sensitivities of the respective satellite observations to current and past surface-mass (ice mass) change and solid Earth processes, we estimate GIA based on viscoelastic response functions to disc load forcing. We calculate and distribute the viscoelastic response functions according to estimates of the variability of lithosphere thickness and mantle viscosity in Antarctica. We compare our GIA estimate with published GIA corrections and evaluate its impact in determining the ice-mass balance in Antarctica from GRACE and satellite altimetry. Particular focus is applied to the Amundsen Sea Sector in West Antarctica, where uplift rates of several centimetres per year have been measured by GPS. We show that most of this uplift is caused by the rapid viscoelastic response to recent ice-load changes, enabled by the presence of a low-viscosity upper mantle in West Antarctica. This paper presents the second and final contributions summarizing the work carried out within a European Space Agency funded study, REGINA (www.regina-science.eu).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Genome Biology and Evolution 9 (2017): 659-676, doi:10.1093/gbe/evx023.
    Description: Understanding and predicting the fate of populations in changing environments require knowledge about the mechanisms that support phenotypic plasticity and the adaptive value and evolutionary fate of genetic variation within populations. Atlantic killifish (Fundulus heteroclitus) exhibit extensive phenotypic plasticity that supports large population sizes in highly fluctuating estuarine environments. Populations have also evolved diverse local adaptations. To yield insights into the genomic variation that supports their adaptability, we sequenced a reference genome and 48 additional whole genomes from a wild population. Evolution of genes associated with cell cycle regulation and apoptosis is accelerated along the killifish lineage, which is likely tied to adaptations for life in highly variable estuarine environments. Genome-wide standing genetic variation, including nucleotide diversity and copy number variation, is extremely high. The highest diversity genes are those associated with immune function and olfaction, whereas genes under greatest evolutionary constraint are those associated with neurological, developmental, and cytoskeletal functions. Reduced genetic variation is detected for tight junction proteins, which in killifish regulate paracellular permeability that supports their extreme physiological flexibility. Low-diversity genes engage in more regulatory interactions than high-diversity genes, consistent with the influence of pleiotropic constraint on molecular evolution. High genetic variation is crucial for continued persistence of species given the pace of contemporary environmental change. Killifish populations harbor among the highest levels of nucleotide diversity yet reported for a vertebrate species, and thus may serve as a useful model system for studying evolutionary potential in variable and changing environments.
    Description: This work was primarily supported by a grant from the National Science Foundation (collaborative research grants DEB-1265282, DEB-1120512, DEB-1120013, DEB-1120263, DEB-1120333, DEB-1120398 to J.K.C., D.L.C., M.E.H., S.I.K., M.F.O., J.R.S., W.W., and A.W.). Further support was provided by the National Institute of Environmental Health Sciences (1R01ES021934-01 to A.W., P42ES7373 to T.H.H., P42ES007381 to M.E.H., and R01ES019324 to J.R.S.), the National Institute of General Medical Sciences (P20GM103423 and P20GM104318 to B.L.K.), and the National Science Foundation (DBI-0640462 and XSEDE-MCB100147 to D.G.).
    Keywords: Population genomics ; Genome sequence ; Comparative genomics ; Adaptation ; Genetic diversity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Physiology 5 (2017): cox061, doi:10.1093/conphys/cox061.
    Description: Recent studies have demonstrated that some hormones are present in baleen powder from bowhead (Balaena mysticetus) and North Atlantic right (Eubalaena glacialis) whales. To test the potential generalizability of this technique for studies of stress and reproduction in large whales, we sought to determine whether all major classes of steroid and thyroid hormones are detectable in baleen, and whether these hormones are detectable in other mysticetes. Powdered baleen samples were recovered from single specimens of North Atlantic right, bowhead, blue (Balaenoptera [B.]musculus), sei (B. borealis), minke (B. acutorostrata), fin (B. physalus), humpback (Megaptera novaeangliae) and gray (Eschrichtius robustus) whales. Hormones were extracted with a methanol vortex method, after which we tested all species with commercial enzyme immunoassays (EIAs, Arbor Assays) for progesterone, testosterone, 17β-estradiol, cortisol, corticosterone, aldosterone, thyroxine and tri-iodothyronine, representing a wide array of steroid and thyroid hormones of interest for whale physiology research. In total, 64 parallelism tests (8 species × 8 hormones) were evaluated to verify good binding affinity of the assay antibodies to hormones in baleen. We also tested assay accuracy, although available sample volume limited this test to progesterone, testosterone and cortisol. All tested hormones were detectable in baleen powder of all species, and all assays passed parallelism and accuracy tests. Although only single individuals were tested, the consistent detectability of all hormones in all species indicates that baleen hormone analysis is likely applicable to a broad range of mysticetes, and that the EIA kits tested here perform well with baleen extract. Quantification of hormones in baleen may be a suitable technique with which to explore questions that have historically been difficult to address in large whales, including pregnancy and inter-calving interval, age of sexual maturation, timing and duration of seasonal reproductive cycles, adrenal physiology and metabolic rate.
    Description: This work was supported by (1) the Center for Bioengineering Innovation at Northern Arizona University and (2) the New England Aquarium.
    Keywords: Baleen ; Cetaceans ; Hormones ; Marine mammals ; Reproduction ; Stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉Seismic free oscillations, or normal modes, provide a convenient tool to calculate low-frequency seismograms in heterogeneous Earth models. A procedure called ‘full mode coupling’ allows the seismic response of the Earth to be computed. However, in order to be theoretically exact, such calculations must involve an infinite set of modes. In practice, only a finite subset of modes can be used, introducing an error into the seismograms. By systematically increasing the number of modes beyond the highest frequency of interest in the seismograms, we investigate the convergence of full-coupling calculations. As a rule-of-thumb, it is necessary to couple modes 1–2 mHz above the highest frequency of interest, although results depend upon the details of the Earth model. This is significantly higher than has previously been assumed. Observations of free oscillations also provide important constraints on the heterogeneous structure of the Earth. Historically, this inference problem has been addressed by the measurement and interpretation of splitting functions. These can be seen as secondary data extracted from low frequency seismograms. The measurement step necessitates the calculation of synthetic seismograms, but current implementations rely on approximations referred to as self- or group-coupling and do not use fully accurate seismograms. We therefore also investigate whether a systematic error might be present in currently published splitting functions. We find no evidence for any systematic bias, but published uncertainties must be doubled to properly account for the errors due to theoretical omissions and regularization in the measurement process. Correspondingly, uncertainties in results derived from splitting functions must also be increased. As is well known, density has only a weak signal in low-frequency seismograms. Our results suggest this signal is of similar scale to the true uncertainties associated with currently published splitting functions. Thus, it seems that great care must be taken in any attempt to robustly infer details of Earth's density structure using current splitting functions.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉In this paper, we propose a new wavelet-based 3-D inversion method for frequency-domain airborne electromagnetic (FDAEM) data. Instead of inverting the model in the space domain using a smoothing constraint, this new method recovers the model in the wavelet domain based on a sparsity constraint. In the wavelet domain, the model is represented by two types of coefficients, which contain both large- and fine-scale informations of the model, meaning the wavelet-domain inversion has inherent multiresolution. In order to accomplish a sparsity constraint, we minimize an L〈sub〉1〈/sub〉-norm measure in the wavelet domain that mostly gives a sparse solution. The final inversion system is solved by an iteratively reweighted least-squares method. We investigate different orders of Daubechies wavelets to accomplish our inversion algorithm, and test them on synthetic frequency-domain AEM data set. The results show that higher order wavelets having larger vanishing moments and regularity can deliver a more stable inversion process and give better local resolution, while the lower order wavelets are simpler and less smooth, and thus capable of recovering sharp discontinuities if the model is simple. At last, we test this new inversion algorithm on a frequency-domain helicopter EM (HEM) field data set acquired in Byneset, Norway. Wavelet-based 3-D inversion of HEM data is compared to L〈sub〉2〈/sub〉-norm-based 3-D inversion's result to further investigate the features of the new method.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉A monitoring method to grasp the spatio-temporal change in the interplate coupling in a subduction zone based on the spatial gradients of surface displacement rate fields is proposed. I estimated the spatio-temporal change in the interplate coupling along the plate boundary in northeastern (NE) Japan by applying the proposed method to the surface displacement rates based on global positioning system observations. The gradient of the surface velocities is calculated in each swath configured along the direction normal to the Japan Trench for time windows such as 0.5, 1, 2, 3 and 5 yr being shifted by one week during the period of 1997–2016. The gradient of the horizontal velocities is negative and has a large magnitude when the interplate coupling at the shallow part (less than approximately 50 km in depth) beneath the profile is strong, and the sign of the gradient of the vertical velocity is sensitive to the existence of the coupling at the deep part (greater than approximately 50 km in depth). The trench-parallel variation of the spatial gradients of a displacement rate field clearly corresponds to the trench-parallel variation of the amplitude of the interplate coupling on the plate interface, as well as the rupture areas of previous interplate earthquakes. Temporal changes in the trench-parallel variation of the spatial gradient of the displacement rate correspond to the strengthening or weakening of the interplate coupling. We can monitor the temporal change in the interplate coupling state by calculating the spatial gradients of the surface displacement rate field to some extent without performing inversion analyses with applying certain constraint conditions that sometimes cause over- and/or underestimation at areas of limited spatial resolution far from the observation network. The results of the calculation confirm known interplate events in the NE Japan subduction zone, such as the post-seismic slip of the 2003 M8.0 Tokachi-oki and 2005 M7.2 Miyagi-oki earthquakes and the recovery of the interplate coupling around the rupture area of the 1994 M7.6 Sanriku-Haruka-oki earthquake. The results also indicate the semi-periodic occurrence of slow slip events and the expansion of the area of slow slip events before the 2011 Tohoku-oki earthquake (M9.0) approaching the hypocentre of the Tohoku-oki earthquake.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify 〈span〉P〈/span〉 and 〈span〉S〈/span〉 body waves, along with 〈span〉P〈/span〉- and 〈span〉S〈/span〉-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of 〈span〉P〈/span〉 arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates 〈span〉P〈/span〉- and 〈span〉S〈/span〉-types FZTW. Inversions of high-quality 〈span〉S〈/span〉-type FZTW indicate that the most likely parameters of the trapping structure are width of ∼70 m, 〈span〉S〈/span〉-wave velocity reduction of 60 per cent, 〈span〉Q〈/span〉 value of 60 and depth of ∼2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉The computational cost of quasi-〈span〉P〈/span〉 wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyse the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of 〈span〉SV〈/span〉-wave artefacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modelling engine performs better than an isotropic migration.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉Over the past 15 yr, numerical models of convection in Earth’s mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough for an accurate prediction of instantaneous flow, but not for a prediction after 10 My of evolution. Therefore, inverse methods (sequential or data assimilation methods) using short-term fully dynamic evolution that predict surface kinematics are promising tools for a better understanding of the state of the Earth’s mantle.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-01-02
    Description: We investigate the impact of the new LUNA rate for the nuclear reaction 22 Ne( p , ) 23 Na on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally pulsing asymptotic giant branch (TP-AGB) stars that experience hot-bottom burning. To this aim, we use the PARSEC and COLIBRI codes to compute the complete evolution, from the pre-main sequence up to the termination of the TP-AGB phase, of a set of stellar models with initial masses in the range 3.0–6.0 M and metallicities Z i = 0.0005, 0.006 and 0.014. We find that the new LUNA measures have much reduced the nuclear uncertainties of the 22 Ne and 23 Na AGB ejecta that drop from factors of ~=10 to only a factor of few for the lowest metallicity models. Relying on the most recent estimations for the destruction rate of 23 Na, the uncertainties that still affect the 22 Ne and 23 Na AGB ejecta are mainly dominated by the evolutionary aspects (efficiency of mass-loss, third dredge-up, convection). Finally, we discuss how the LUNA results impact on the hypothesis that invokes massive AGB stars as the main agents of the observed O–Na anticorrelation in Galactic globular clusters. We derive quantitative indications on the efficiencies of key physical processes (mass-loss, third dredge-up, sodium destruction) in order to simultaneously reproduce both the Na-rich, O-poor extreme of the anticorrelation and the observational constraints on the CNO abundance. Results for the corresponding chemical ejecta are made publicly available.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-01-02
    Description: We fitted the 3–180 keV spectrum of all the observations of the neutron star low-mass X-ray binary 4U 1636–53 taken with the Rossi X-ray Timing Explorer using a model that includes a thermal Comptonization component. We found that in the low hard state the power-law index of this component, , gradually increases as the source moves in the colour–colour diagram. When the source undergoes a transition from the hard to the soft state drops abruptly; once the source is in the soft state increases again and then decreases gradually as the source spectrum softens further. The changes in , together with changes of the electron temperature, reflect changes of the optical depth in the corona. The lower kilohertz quasi-periodic oscillation (kHz QPO) in this source appears only in observations during the transition from the hard to the soft state, when the optical depth of the corona is high and changes depends strongly upon the position of the source in the colour–colour diagram. Our results are consistent with a scenario in which the lower kHz QPO reflects a global mode in the system that results from the resonance between the disc and/or the neutron star surface, and the Comptonizing corona.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-01-02
    Description: Supermassive stars (SMSs; ~10 5 M ) formed from metal-free gas in the early Universe attract attention as progenitors of supermassive black holes observed at high redshifts. To form SMSs by accretion, central protostars must accrete at as high rates as ~0.1–1 M yr –1 . Such protostars have very extended structures with bloated envelopes, like supergiant stars, and are called supergiant protostars (SGPSs). Under the assumption of hydrostatic equilibrium, SGPSs have density-inverted layers, where the luminosity becomes locally super-Eddington, near the surface. If the envelope matter is allowed to flow out, however, a stellar wind could be launched and hinder the accretion growth of SGPSs before reaching the supermassive regime. We examine whether radiation-driven winds are launched from SGPSs by constructing steady and spherically symmetric wind solutions. We find that the wind velocity does not reach the escape velocity in any case considered. This is because once the temperature falls below ~10 4 K, the opacity plummet drastically owing to the recombination of hydrogen and the acceleration ceases suddenly. This indicates that, in realistic non-steady cases, even if outflows are launched from the surface of SGPSs, they would fall back again. Such a ‘wind’ does not result in net mass-loss and does not prevent the growth of SGPSs. In conclusion, SGPSs will grow to SMSs and eventually collapse to massive black holes of ~10 5 M , as long as the rapid accretion is maintained.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-01-02
    Description: The emergence of cosmic structure is commonly considered one of the most complex phenomena in nature. However, this complexity has never been defined nor measured in a quantitative and objective way. In this work, we propose a method to measure the information content of cosmic structure and to quantify the complexity that emerges from it, based on Information Theory. The emergence of complex evolutionary patterns is studied with a statistical symbolic analysis of the datastream produced by state-of-the-art cosmological simulations of forming galaxy clusters. This powerful approach allows us to measure how many bits of information is necessary to predict the evolution of energy fields in a statistical way, and it offers a simple way to quantify when, where and how the cosmic gas behaves in complex ways. The most complex behaviours are found in the peripheral regions of galaxy clusters, where supersonic flows drive shocks and large energy fluctuations over a few tens of million years. Describing the evolution of magnetic energy requires at least twice as large amount of bits as required for the other energy fields. When radiative cooling and feedback from galaxy formation are considered, the cosmic gas is overall found to double its degree of complexity. In the future, Cosmic Information Theory can significantly increase our understanding of the emergence of cosmic structure as it represents an innovative framework to design and analyse complex simulations of the Universe in a simple, yet powerful way.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-01-01
    Description: Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp . japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA–mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-01-01
    Description: Geographical variation among contiguous populations is frequently attributed to ecological divergence or historical isolation followed by secondary contact. Distinguishing between these effects is key to studies of incipient speciation and could be revealed by different genomic signatures. We used RAD-seq analyses to examine morphologically divergent populations of the endemic lizard ( Gallotia galloti ) from the volcanic island of Tenerife. Previous analyses have suggested ecological and historical causes to explain the morphological diversity. Analyses of 276,483 single nucleotide polymorphisms (SNPs) from 〉20 Mbp of the genome revealed one genetically divergent population from Anaga, a region associated with divergent mtDNA lineages in other Tenerife endemics. This population also has a high number of private alleles, and its divergence can be explained by historical isolation. Bayesian outlier analyses identified a small proportion of SNPs as candidates for selection (0.04%) which were strongly differentiated between xeric and mesic habitat types. Individual testing for specific xeric–mesic selection using an alternative approach also supported ecological divergence in a similarly small proportion of SNPs. The study indicates the roles of both historical isolation and ecological divergence in shaping genomic diversity in G. galloti . However, north–south morphological divergence appears solely associated with the latter and likely involves a relatively small proportion of the genome.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-01-01
    Description: Streptococcus anginosus is a member of the normal oral flora that can become a pathogen causing pyogenic infections in humans. The genome of daptomycin-resistant strain J4206, originally isolated from a patient suffering from breakthrough bacteremia and septic shock at the University of Texas Health Science Center at San Antonio, was determined. The circular genome is 2,001,352 bp long with a GC content of 38.62% and contains multiple mobile genetic elements, including the phage-like chromosomal island SanCI that mediates a mutator phenotype, transposons, and integrative conjugative elements. Daptomycin resistance involves multiple alterations in the cell membrane and cell wall, and unique features were identified in J4206 that may contribute to resistance. A cluster of capsular polysaccharide (CPS) genes for choline metabolism and transport are present that may help neutralize cell surface charges, destabilizing daptomycin binding. Further, unique J4206 genes encoding sortases and LPXTG-target proteins that are involved in cell wall modification were present. The J4206 genome is phylogenetically closely related to the recently reported vancomycin-resistant SA1 strain; however, these genomes differ with SNPs in cardiolipin synthetase, histidine kinase yycG , teichoic acid modification genes, and other genes involved in cell surface modification. Transmission electron microscopy showed that the cell walls of both strains J4206 and SA1 were significantly thicker and more electron dense than daptomycin- and vancomycin-sensitive strain J4211. This comparative genomic study has identified unique genes as well as allelic variants in the J4206 genome that are involved in cell surface modification and thus might contribute to the acquisition of daptomycin resistance.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-01-01
    Description: Chromosome number changes during the evolution of angiosperms are likely to have played a major role in speciation. Their study is of utmost importance, especially now, as a probabilistic model is available to study chromosome evolution within a phylogenetic framework. In the present study, likelihood models of chromosome number evolution were fitted to the largest family of flowering plants, the Asteraceae. Specifically, a phylogenetic supertree of this family was used to reconstruct the ancestral chromosome number and infer genomic events. Our approach inferred that the ancestral chromosome number of the family is n = 9. Also, according to the model that best explained our data, the evolution of haploid chromosome numbers in Asteraceae was a very dynamic process, with genome duplications and descending dysploidy being the most frequent genomic events in the evolution of this family. This model inferred more than one hundred whole genome duplication events; however, it did not find evidence for a paleopolyploidization at the base of this family, which has previously been hypothesized on the basis of sequence data from a limited number of species. The obtained results and potential causes of these discrepancies are discussed.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-01-01
    Description: Elastic reverse time migration (RTM) can yield accurate subsurface information (e.g. PP and PS reflectivity) by imaging the multicomponent seismic data. However, the existing RTM methods are still insufficient to provide satisfactory results because of the finite recording aperture, limited bandwidth and imperfect illumination. Besides, the P - and S -wave separation and the polarity reversal correction are indispensable in conventional elastic RTM. Here, we propose an iterative elastic least-squares RTM (LSRTM) method, in which the imaging accuracy is improved gradually with iteration. We first use the Born approximation to formulate the elastic de-migration operator, and employ the Lagrange multiplier method to derive the adjoint equations and gradients with respect to reflectivity. Then, an efficient inversion workflow (only four forward computations needed in each iteration) is introduced to update the reflectivity. Synthetic and field data examples reveal that the proposed LSRTM method can obtain higher-quality images than the conventional elastic RTM. We also analyse the influence of model parametrizations and misfit functions in elastic LSRTM. We observe that Lamé parameters, velocity and impedance parametrizations have similar and plausible migration results when the structures of different models are correlated. For an uncorrelated subsurface model, velocity and impedance parametrizations produce fewer artefacts caused by parameter crosstalk than the Lamé coefficient parametrization. Correlation- and convolution-type misfit functions are effective when amplitude errors are involved and the source wavelet is unknown, respectively. Finally, we discuss the dependence of elastic LSRTM on migration velocities and its antinoise ability. Imaging results determine that the new elastic LSRTM method performs well as long as the low-frequency components of migration velocities are correct. The quality of images of elastic LSRTM degrades with increasing noise.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-01-01
    Description: Ribosomal RNAs (rRNAs) account for 〉60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-01-01
    Description: In general, the complex electrical resistivity in the subsurface is anisotropic. Despite this, algorithms for the tomographic inversion of complex resistivity data commonly assume isotropy, mainly due to the lack of anisotropic modelling and inversion schemes, potentially leading to artefacts in the inversion results in the presence of anisotropy. The development of an effective anisotropic complex resistivity inversion algorithm which utilizes the gradient information of some cost function benefits from understanding the characteristics of the problem's sensitivities, that is, the partial derivative of the impedance forward response with respect to the complex conductivities in the different spatial directions, as well as with respect to the different ratios of complex conductivities, that is, the different anisotropy ratios. We here derive expressions for these sensitivities and, based on a 2.5-D finite-element modelling algorithm, we compute and discuss sensitivity distributions as well as measurement response curves of typical surface and cross-borehole measurement configurations for 2-D subsurface anisotropic complex resistivity distributions. Depending on the electrode layout and measurement configuration, the sensitivity with respect to the conductivity in a particular direction shows a unique pattern, while for other directions sensitivity patterns are qualitatively similar. These sensitivity characteristics translate into important equivalences between impedance responses of local anisotropic and isotropic anomalies, for both magnitude and phase. Accordingly, with collinear surface arrays only the complex conductivity in the direction of the electrode layout can be unambiguously resolved, and with cross-borehole arrays only the conductivity in the vertical direction, provided an in-hole current injection is used. Nevertheless, anisotropy ratios involving these resolvable conductivity components are likewise detectable. The distinct shape of the measurement response curves, reflecting the distinct spatial patterns of the corresponding sensitivity distributions, suggest that optimized measurement configurations can be inferred for specific exploration questions involving electrical anisotropy and given electrode layouts. The gained insight into the characteristics of the sensitivity distributions of complex resistivity measurements in case of subsurface anisotropy should guide the implementation of effective anisotropic complex resistivity inversion schemes and lead to a routine use of such schemes in any resistivity and induced polarization surveys whenever subsurface electrical anisotropy could be encountered.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-01-01
    Description: The streaming potential phenomenon is an electrokinetic effect that occurs in porous media. It is characterized by an electrokinetic (EK) coefficient. The aim of this paper is to simulate the EK coefficient in unsaturated conditions using the Lattice Boltzmann method in a 2-D capillary channel. The multiphase flow is simulated with the model of Shan & Chen. The Poisson–Boltzmann equation is solved by implementing the model of Chai & Shi. The streaming potential response shows a non-monotonous behaviour due to the combination of the increase of charge density and decrease of flow velocity with decreasing water saturation. Using a potential of –20 mV at the air–water interface, an enhancement of a factor 5–30 of the EK coefficient, compared to the saturated state, can be observed due to the positive charge excess at this interface which is magnified by the fluid velocity away from the rock surface. This enhancement is correlated to the fractioning of the bubbles, and to the dynamic state of these bubbles, moving or entrapped in the crevices of the channel.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-01-02
    Description: We present the results of two-dimensional hydrodynamic simulations of self-gravitating circumbinary discs around binaries whose parameters match those of the circumbinary planet-hosting systems Kepler-16, Kepler-34 and Kepler-35. Previous work has shown that non-self-gravitating discs in these systems form an eccentric precessing inner cavity due to tidal truncation by the binary, and planets which form at large radii migrate until stalling at this cavity. Whilst this scenario appears to provide a natural explanation for the observed orbital locations of the circumbinary planets, previous simulations have failed to match the observed planet orbital parameters. The aim of this work is to examine the role of self-gravity in modifying circumbinary disc structure as a function of disc mass, prior to considering the evolution of embedded circumbinary planets. In agreement with previous work, we find that for disc masses between one and five times the minimum mass solar nebula (MMSN), disc self-gravity affects modest changes in the structure and evolution of circumbinary discs. Increasing the disc mass to 10 or 20 MMSN leads to two dramatic changes in disc structure. First, the scale of the inner cavity shrinks substantially, bringing its outer edge closer to the binary. Secondly, in addition to the eccentric inner cavity, additional precessing eccentric ring-like features develop in the outer regions of the discs. If planet formation starts early in the disc lifetime, these changes will have a significant impact on the formation and evolution of planets and precursor material.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-01-02
    Description: In this paper, we present a multiwavelength investigation of the star-forming complex IRAS 20286+4105, located in the Cygnus X region. Near-infrared K -band data are used to revisit the cluster/stellar group identified in previous studies. Radio continuum observations at 610 and 1280 MHz show the presence of a H ii region possibly powered by a star of spectral type B0–B0.5. The cometary morphology of the ionized region is explained by invoking the bow-shock model, where the likely association with a nearby supernova remnant is also explored. A compact radio knot with a non-thermal spectral index is detected towards the centre of the cloud. Mid-infrared data from the Spitzer Legacy Survey of the Cygnus X region show the presence of six Class I young stellar objects inside the cloud. Thermal dust emission in this complex is modelled using Herschel far-infrared data to generate dust temperature and column density maps. Herschel images also show the presence of two clumps in this region, the masses of which are estimated to be ~175 and 30 M . The mass–radius relation and the surface density of the clumps mean that they do not qualify as massive star-forming sites. An overall picture of a runaway star ionizing the cloud and a triggered population of intermediate-mass, Class I sources located towards the cloud centre emerges from this multiwavelength study. Variation in the dust emissivity spectral index is shown to exist in this region and is seen to have an inverse relation with the dust temperature.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-01-02
    Description: We present a modification of the method for reconstructing the stellar velocity ellipsoid (SVE) in disc galaxies. Our version does not need any parametrization of the velocity dispersion profiles and uses only one assumption that the ratio z / R remains constant along the profile or along several pieces of the profile. The method was tested on two galaxies from the sample of other authors and for the first time applied to three lenticular galaxies NGC 1167, NGC 3245 and NGC 4150, as well as to one Sab galaxy NGC 338. We found that for galaxies with a high inclination ( $i 〉 55^\circ \text{--}60^\circ$ ) it is difficult or rather impossible to extract the information about SVE, while for galaxies at an intermediate inclination the procedure of extracting is successful. For NGC 1167 we managed to reconstruct SVE, provided that the value of z / R is piecewise constant. We found z / R = 0.7 for the inner parts of the disc and z / R = 0.3 for the outskirts. We also obtained a rigid constraint on the value of the radial velocity dispersion R for highly inclined galaxies, and tested the result using the asymmetric-drift equation, provided that the gas rotation curve is available.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-01-02
    Description: This paper presents new results from the ongoing study of the unusual Lynx–Cancer void galaxy DDO 68, which has star-forming regions of record low metallicity [12+log (O/H) ~7.14]. The results include the following. (i) A new spectrum and photometry have been obtained with the 6-m SAO RAS telescope (BTA) for the luminous blue variable (LBV = DDO68-V1). Photometric data sets were complemented with others based on the Sloan Digital Sky Survey (SDSS) and the Hubble Space Telescope ( HST ) archive images. (ii) We performed an analysis of the DDO 68 supergiant shell (SGS) and the prominent smaller Hα arcs/shells visible in the HST image coupled with kinematic maps in Hα obtained with the Fabry–Perot interferometer (FPI) at the BTA. (iii) We compiled a list of about 50 of the most luminous stars (–9.1 mag 〈 M V 〈 –6.0 mag) identified from the HST images associated with the star-forming regions with known extremely low O/H. This is intended to pave the path for the current science to be investigated with the next generation of giant telescopes. We have confirmed earlier hints of significant variation of the LBV optical light, deriving its amplitude as V 3.7 mag for the first time. New data suggest that in 2008–2010 the LBV reached M V = –10.5 mag and probably underwent a giant eruption. We argue that the structure of star-forming complexes along the SGS (‘Northern Ring’) perimeter provides evidence for sequential induced star-formation episodes caused by the shell gas instabilities and gravitational collapse. The variability of some luminous extremely metal-poor stars in DDO 68 can currently be monitored with medium-size telescopes at sites with superb seeing.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-01-02
    Description: The number, distribution and properties of dwarf satellites are crucial probes of the physics of galaxy formation at low masses and the response of satellite galaxies to the tidal and gas dynamical effects of their more massive parent. To make progress, it is necessary to augment and solidify the census of dwarf satellites of galaxies outside the Local Group. Müller et al. presented 16 dwarf galaxy candidates near M83, but lacking reliable distances, it is unclear which candidates are M83 satellites. Using red-giant-branch stars from the HST /GHOSTS survey in conjunction with ground-based images from VLT/VIMOS, we confirm that one of the candidates, dw1335-29 – with a projected distance of 26 kpc from M83 and a distance modulus of $(m-M)_0 = 28.5^{+0.3}_{-0.1}$ – is a satellite of M83. We estimate an absolute magnitude M V  = –10.1 ± 0.4, an ellipticity of $0.40^{+0.14}_{-0.22}$ , a half-light radius of $656^{+121}_{-170}$  pc and [Fe/H] = $-1.3^{+0.3}_{-0.4}$ . Owing to dw1335-29's somewhat irregular shape and possible young stars, we classify this galaxy as a dwarf irregular or transition dwarf. This is curious, as with a projected distance of 26 kpc from M83, dw1335-29 is expected to lack recent star formation. Further study of M83's dwarf population will reveal if star formation in its satellites is commonplace (suggesting a lack of a hot gas envelope for M83 that would quench star formation) or rare (suggesting that dw1335-29 has a larger M83-centric distance, and is fortuitously projected to small radii).
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-01-01
    Description: Conserved non-coding sequences (CNSs) of Eukaryotes are known to be significantly enriched in regulatory sequences. CNSs of diverse lineages follow different patterns in abundance, sequence composition, and location. Here, we report a thorough analysis of CNSs in diverse groups of Eukaryotes with respect to GC content heterogeneity. We examined 24 fungi, 19 invertebrates, and 12 non-mammalian vertebrates so as to find lineage specific features of CNSs. We found that fungi and invertebrate CNSs are predominantly GC rich as in plants we previously observed, whereas vertebrate CNSs are GC poor. This result suggests that the CNS GC content transition occurred from the ancestral GC rich state of Eukaryotes to GC poor in the vertebrate lineage due to the enrollment of GC poor transcription factor binding sites that are lineage specific. CNS GC content is closely linked with the nucleosome occupancy that determines the location and structural architecture of DNAs.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-01-01
    Description: Male mutation bias, when more mutations are passed on via the male germline than via the female germline, is observed across mammals. One common way to infer the magnitude of male mutation bias, α, is to compare levels of neutral sequence divergence between genomic regions that spend different amounts of time in the male and female germline. For great apes, including human, we show that estimates of divergence are reduced in putatively unconstrained regions near genes relative to unconstrained regions far from genes. Divergence increases with increasing distance from genes on both the X chromosome and autosomes, but increases faster on the X chromosome than autosomes. As a result, ratios of X/A divergence increase with increasing distance from genes and corresponding estimates of male mutation bias are significantly higher in intergenic regions near genes versus far from genes. Future studies in other species will need to carefully consider the effect that genomic location will have on estimates of male mutation bias.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-01-01
    Description: Great genetic variability among teleost immunomes, with gene losses and expansions of central adaptive and innate components, has been discovered through genome sequencing over the last few years. Here, we demonstrate that the innate Myxovirus resistance gene ( Mx ) is lost from the ancestor of Gadiformes and the closely related Stylephorus chordatus , thus predating the loss of Major Histocompatibility Complex class II ( MHCII ) in Gadiformes. Although the functional implication of Mx loss is still unknown, we demonstrate that this loss is one of several ancient events appearing in successive order throughout the evolution of teleost immunity. In particular, we find that the loss of Toll-like receptor 5 predates the loss of Mx involving the entire Paracanthopterygii lineage. Using a time-calibrated phylogeny, we show that loss of MHCII and Mx overlap with major paleoclimatic and geological events indicating that these genetic changes were adaptive responses to the changing environment at the time.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-01-01
    Description: Males and females often display extensive phenotypic differences, and many of these sexual dimorphisms are thought to result from differences between males and females in expression of genes present in both sexes. Sex-biased genes have been shown to exhibit accelerated rates of evolution in a wide array of species, however the cause of this remains enigmatic. In this study, we investigate the extent and evolutionary dynamics of sex-biased gene expression in zebrafish. Our results indicate that both male-biased genes and female-biased genes exhibit accelerated evolution at the protein level. In order to differentiate between adaptive and nonadaptive causes, we tested for codon usage bias and signatures of different selective regimes in our sequence data. Our results show that both male- and female-biased genes show signatures consistent with adaptive evolution. In order to test the generality of our findings across fish, we also analyzed publicly available data on sticklebacks, and found results consistent with our findings in zebrafish.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-01-01
    Description: Host–pathogen interactions may result in either directional selection or in pressure for the maintenance of polymorphism at the molecular level. Hence signatures of both positive and balancing selection are expected in immune genes. Because both overall selective pressure and specific targets may differ between species, large-scale population genomic studies are useful in detecting functionally important immune genes and comparing selective landscapes between taxa. Such studies are of particular interest in amphibians, a group threatened worldwide by emerging infectious diseases. Here, we present an analysis of polymorphism and divergence of 634 immune genes in two lineages of Lissotriton newts: L. montandoni and L. vulgaris graecus . Variation in newt immune genes has been shaped predominantly by widespread purifying selection and strong evolutionary constraint, implying long-term importance of these genes for functioning of the immune system. The two evolutionary lineages differ in the overall strength of purifying selection which can partially be explained by demographic history but may also signal differences in long-term pathogen pressure. The prevalent constraint notwithstanding, 23 putative targets of positive selection and 11 putative targets of balancing selection were identified. The latter were detected by composite tests involving the demographic model and further validated in independent population samples. Putative targets of balancing selection encode proteins which may interact closely with pathogens but include also regulators of immune response. The identified candidates will be useful for testing whether genes affected by balancing selection are more prone to interspecific introgression than other genes in the genome.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-01-01
    Description: Genomic variation in Indian populations is of great interest due to the diversity of ancestral components, social stratification, endogamy and complex admixture patterns. With an expanding population of 1.2 billion, India is also a treasure trove to catalogue innocuous as well as clinically relevant rare mutations. Recent studies have revealed four dominant ancestries in populations from mainland India: Ancestral North-Indian (ANI), Ancestral South-Indian (ASI), Ancestral Tibeto–Burman (ATB) and Ancestral Austro-Asiatic (AAA). The 1000 Genomes Project (KGP) Phase-3 data include about 500 genomes from five linguistically defined Indian-Subcontinent (IS) populations (Punjabi, Gujrati, Bengali, Telugu and Tamil) some of whom are recent migrants to USA or UK. Comparative analyses show that despite the distinct geographic origins of the KGP-IS populations, the ANI component is predominantly represented in this dataset. Previous studies demonstrated population substructure in the HapMap Gujrati population, and we found evidence for additional substructure in the Punjabi and Telugu populations. These substructured populations have characteristic/significant differences in heterozygosity and inbreeding coefficients. Moreover, we demonstrate that the substructure is better explained by factors like differences in proportion of ancestral components, and endogamy driven social structure rather than invoking a novel ancestral component to explain it. Therefore, using language and/or geography as a proxy for an ethnic unit is inadequate for many of the IS populations. This highlights the necessity for more nuanced sampling strategies or corrective statistical approaches, particularly for biomedical and population genetics research in India.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-01-01
    Description: Within the last 15 years, two related coronaviruses (Severe Acute Respiratory Syndrome [SARS]-CoV and Middle East Respiratory Syndrome [MERS]-CoV) expanded their host range to include humans, with increased virulence in their new host. Coronaviruses were recently found to have little intrinsic disorder compared with many other virus families. Because intrinsically disordered regions have been proposed to be important for rewiring interactions between virus and host, we investigated the conservation of intrinsic disorder and secondary structure in coronaviruses in an evolutionary context. We found that regions of intrinsic disorder are rarely conserved among different coronavirus protein families, with the primary exception of the nucleocapsid. Also, secondary structure predictions are only conserved across 50–80% of sites for most protein families, with the implication that 20–50% of sites do not have conserved secondary structure prediction. Furthermore, nonconserved structure sites are significantly less constrained in sequence divergence than either sites conserved in the secondary structure or sites conserved in loop. Avoiding regions symptomatic of conformational flexibility such as disordered sites and sites with nonconserved secondary structure to identify potential broad-specificity antiviral targets, only one sequence motif (five residues or longer) remains from the 〉10,000 starting sites across all coronaviruses in this study. The identified sequence motif is found within the nonstructural protein (NSP) 12 and constitutes an antiviral target potentially effective against the present day and future coronaviruses. On shorter evolutionary timescales, the SARS and MERS clades have more sequence motifs fulfilling the criteria applied. Interestingly, many motifs map to NSP12 making this a prime target for coronavirus antivirals.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-01-01
    Description: Species of the Fusarium fujikuroi species complex (FFC) cause a wide spectrum of often devastating diseases on diverse agricultural crops, including coffee, fig, mango, maize, rice, and sugarcane. Although species within the FFC are difficult to distinguish by morphology, and their genes often share 90% sequence similarity, they can differ in host plant specificity and life style. FFC species can also produce structurally diverse secondary metabolites (SMs), including the mycotoxins fumonisins, fusarins, fusaric acid, and beauvericin, and the phytohormones gibberellins, auxins, and cytokinins. The spectrum of SMs produced can differ among closely related species, suggesting that SMs might be determinants of host specificity. To date, genomes of only a limited number of FFC species have been sequenced. Here, we provide draft genome sequences of three more members of the FFC: a single isolate of F. mangiferae , the cause of mango malformation, and two isolates of F. proliferatum , one a pathogen of maize and the other an orchid endophyte. We compared these genomes to publicly available genome sequences of three other FFC species. The comparisons revealed species-specific and isolate-specific differences in the composition and expression ( in vitro and in planta ) of genes involved in SM production including those for phytohormome biosynthesis. Such differences have the potential to impact host specificity and, as in the case of F. proliferatum , the pathogenic versus endophytic life style.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-01-01
    Description: Seismic noise measurements (ambient vibrations) have been increasingly used in rock slope stability assessment for both investigation and monitoring purposes. Recent studies made on gravitational hazard revealed significant spectral amplification at given frequencies and polarization of the wave-field in the direction of maximum rock slope displacement. Different properties (resonance frequencies, polarization and spectral ratio amplitudes) can be derived from the spectral analysis of the seismic noise to characterize unstable rock masses. The objective here is to identify the dynamic parameters that could be used to gain information on prone-to-fall rock columns’ geometry. To do so, the dynamic response of prone-to-fall columns to seismic noise has been studied on two different sites exhibiting cliff-like geometry. Dynamic parameters (main resonance frequency and spectral ratio amplitudes) that could characterize the column decoupling were extracted from seismic noise and their variations were studied taking into account the external environmental parameter fluctuations. Based on this analysis, a two-dimensional numerical model has been set up to assess the influence of the rear vertical fractures identified on both sites on the rock column motion response. Although a simple relation was found between spectral ratio amplitudes and the rock column slenderness, it turned out that the resonance frequency is more stable than the spectral ratio amplitudes to characterize this column decoupling, provided that the elastic properties of the column can be estimated. The study also revealed the effect of additional remote fractures on the dynamic parameters, which in turn could be used for detecting the presence of such discontinuities.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-01-01
    Description: In this study, we present a new synthesis of GPS velocities for tectonic deformation within the Tibetan Plateau and its surrounding areas, a combined data set of ~1854 GPS-derived horizontal velocity vectors. Assuming that crustal deformation is localized along major faults, a block modelling approach is employed to interpret the GPS velocity field. We construct a 30-element block model to describe present-day deformation in western China, with half of them located within the Tibetan Plateau, and the remainder located in its surrounding areas. We model the GPS velocities simultaneously for the effects of block rotations and elastic strain induced by the bounding faults. Our model yields a good fit to the GPS data with a mean residual of 1.08 mm a –1 compared to the mean uncertainty of 1.36 mm a –1 for each velocity component, indicating a good agreement between the predicted and observed velocities. The major strike-slip faults such as the Altyn Tagh, Xianshuihe, Kunlun and Haiyuan faults have relatively uniform slip rates in a range of 5–12 mm a –1 along most of their segments, and the estimated fault slip rates agree well with previous geologic and geodetic results. Blocks having significant residuals are located at the southern and southeastern Tibetan Plateau, suggesting complex tectonic settings and further refinement of accurate definition of block geometry in these regions.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-01-01
    Description: Surface-related multiples have been utilized in the reverse-time migration (RTM) procedures, and additional illumination for subsurface can be provided. Meanwhile, many cross-talks are generated from undesired interactions between forward- and backward-propagated seismic waves. In this paper, subsequent to analysing and categorizing these cross-talks, we propose RTM of first-order multiples to avoid most undesired interactions in RTM of all-order multiples, where only primaries are forward-propagated and crosscorrelated with the backward-propagated first-order multiples. With primaries and multiples separated during regular seismic data processing as the input data, first-order multiples can be obtained by a two-step scheme: (1) the dual-prediction of higher-order multiples; and (2) the adaptive subtraction of predicted higher-order multiples from all-order multiples within local offset-time windows. In numerical experiments, two synthetic and a marine field data sets are used, where different cross-talks generated by RTM of all-order multiples can be identified and the proposed RTM of first-order multiples can provide a very interpretable image with a few cross-talks.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-01-02
    Description: We present high-resolution radio continuum observations with the Karl G. Jansky very large array at 6, 8.5, 11.5 and 15 GHz of the double-peaked emission-line galaxy 2MASXJ12032061+1319316. The radio emission has a prominent S-shaped morphology with highly symmetric radio jets that extend over a distance of ~1.5 arcsec (1.74 kpc) on either side of the core of size ~0.1 arcsec (116 pc). The radio jets have a helical structure resembling the precessing jets in the galaxy NGC 326 which has confirmed dual active galactic nuclei (AGN). The nuclear bulge velocity dispersion gives an upper limit of (1.56 ± 0.26) x 10 8 M for the total mass of nuclear black hole(s). We present a simple model of precessing jets in 2MASXJ1203 and find that the precession time-scale is around 10 5 yr: this matches the source lifetime estimate via spectral ageing. We find that the expected supermassive black hole (SMBH) separation corresponding to this time-scale is 0.02 pc. We used the double-peaked emission lines in 2MASXJ1203 to determine an orbital speed for a dual AGN system and the associated jet precession time-scale, which turns out to be more than the Hubble time, making it unfeasible. We conclude that the S-shaped radio jets are due to jet precession caused either by a binary/dual SMBH system, a single SMBH with a tilted accretion disc or a dual AGN system where a close pass of the secondary SMBH in the past has given rise to jet precession.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-01-02
    Description: In any flux-density limited sample of blazars, the distribution of the time-scale modulation factor t '/ t , which quantifies the change in observed time-scales compared to the rest-frame ones due to redshift and relativistic compression follows an exponential distribution with a mean depending on the flux limit of the sample. In this work, we produce the mathematical formalism that allows us to use this information in order to uncover the underlining rest-frame probability density function of measurable time-scales of blazar jets. We extensively test our proposed methodology using a simulated Flat Spectrum Radio Quasar population with a 1.5 Jy flux-density limit in the simple case (where all blazars share the same intrinsic time-scale), in order to identify limits of applicability and potential biases due to observational systematics and sample selection. We find that for monitoring with time intervals between observations longer than ~30 per cent of the intrinsic time-scale under investigation the method loses its ability to produce robust results. For time intervals of ~3 per cent of the intrinsic time-scale, the error of the method is as low as 1 per cent in recovering the intrinsic rest-frame time-scale. We applied our method to rotations of the optical polarization angle of blazars observed by RoboPol. We found that the intrinsic time-scales of the longest duration rotation event in each blazar follows a narrow distribution, well described by a normal distribution with mean 87 d and standard deviation 5 d. We discuss possible interpretations of this result.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-01-02
    Description: About one-third of X-ray-luminous clusters show smooth, Mpc-scale radio emission, known as giant radio haloes. One promising model for radio haloes is Fermi-II acceleration of seed relativistic electrons by compressible turbulence. The origin of these seed electrons has never been fully explored. Here, we integrate the Fokker–Planck equation of the cosmic ray (CR) electron and proton distributions when post-processing cosmological simulations of cluster formation and confront them with radio surface brightness and spectral data of Coma. For standard assumptions, structure formation shocks lead to a seed electron population that produces too centrally concentrated radio emission. Matching observations requires modifying properties of the CR population (rapid streaming; enhanced CR electron acceleration at shocks) or turbulence (increasing turbulent-to-thermal energy density with radius), but at the expense of fine-tuning. In a parameter study, we find that radio properties are exponentially sensitive to the amplitude of turbulence, which is inconsistent with small scatter in scaling relations. This sensitivity is removed if we relate the acceleration time to the turbulent dissipation time. In this case, turbulence above a threshold value provides a fixed amount of amplification; observations could thus potentially constrain the unknown CR seed population. To obtain sufficient acceleration, the turbulent magneto-hydrodynamics cascade has to terminate by transit time damping on CRs, i.e. thermal particles must be scattered by plasma instabilities. Understanding the small scatter in radio halo scaling relations may provide a rich source of insight on plasma processes in clusters.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-01-02
    Description: We measure a combination of gravitational lensing, galaxy clustering and redshift-space distortions (RSDs) called E G . The quantity E G probes both parts of metric potential and is insensitive to galaxy bias and 8 . These properties make it an attractive statistic to test lambda cold dark matter, general relativity and its alternate theories. We have combined CMASS Data Release 11 with CFHTLenS and recent measurements of β from RSD analysis, and find E G ( z  = 0.57) = 0.42 ± 0.056, a 13 per cent measurement in agreement with the prediction of general relativity E G ( z  = 0.57) = 0.396 ± 0.011 using the Planck 2015 cosmological parameters. We have corrected our measurement for various observational and theoretical systematics. Our measurement is consistent with the first measurement of E G using cosmic microwave background lensing in place of galaxy lensing at small scales, but shows 2.8 tension when compared with their final results including large scales. This analysis with future surveys will provide improved statistical error and better control over systematics to test general relativity and its alternate theories.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-01-02
    Description: Using a Bayesian framework, we quantify what current observations imply about the history of the epoch of reionization (EoR). We use a popular, three-parameter EoR model, flexible enough to accommodate a wide range of physically plausible reionization histories. We study the impact of various EoR observations: (i) the optical depth to the CMB measured by Planck 2016; (ii) the dark fraction in the Lyman α and β forests; (iii) the redshift evolution of galactic Lyα emission (so-called ‘Lyα fraction’); (iv) the clustering of Lyα emitters; (v) the IGM damping wing imprint in the spectrum of QSO ULASJ1120+0641; (vi) and the patchy kinetic Sunyaev–Zel'dovich signal. Combined, (i) and (ii) already place interesting constraints on the reionization history, with the epochs corresponding to an average neutral fraction of (75, 50, 25) per cent, constrained at 1 to $z= (9.21^{+1.22 }_{ -1.15}, 8.14^{+1.08 }_{ -1.00}, 7.26^{+1.13 }_{ -0.96})$ . Folding-in more model-dependent EoR observations [(iii)–(vi)], strengthens these constraints by tens of per cent, at the cost of a decrease in the likelihood of the best-fitting model, driven mostly by (iii). The tightest constraints come from (v). Unfortunately, no current observational set is sufficient to break degeneracies and constrain the astrophysical EoR parameters. However, model-dependent priors on the EoR parameters themselves can be used to set tight limits by excluding regions of parameter space with strong degeneracies. Motivated by recent observations of z ~ 7 faint, lensed galaxies, we show how a conservative upper limit on the virial temperature of haloes which host reionizing galaxies can constrain the escape fraction of ionizing photons to $f_{\rm esc} = 0.14^{+0.26 }_{ -0.09}$ .
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-01-02
    Description: We present new time-resolved photometry of 74 cataclysmic variables (CVs), 47 of which are eclipsing. Thirteen of these eclipsing systems are newly discovered. For all 47 eclipsing systems, we show high cadence (1–20 s) light curves obtained with the high-speed cameras ULTRACAM and ULTRASPEC. We provide new or refined ephemerides, and supply mid-eclipse times for all observed eclipses. We assess the potential for light-curve modelling of all 47 eclipsing systems to determine their system parameters, finding 20 systems that appear to be suitable for future study. Systems of particular interest include V713 Cep, in which we observed a temporary switching-off of accretion; and ASASSN-14mv and CSS111019:233313–155744, which both have orbital periods well below the CV period minimum. The short orbital periods and light-curve shapes suggest that they may be double degenerate (AM CVn) systems or CVs with evolved donor stars.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-01-02
    Description: We have used the 610-MHz receivers of the Giant Metrewave Radio Telescope (GMRT) to detect associated H i 21-cm absorption from the z  = 1.2230 blazar TXS 1954+513. The GMRT H i 21-cm absorption is likely to arise against either the milliarcsecond-scale core or the one-sided milliarcsecond-scale radio jet, and is blueshifted by 328 km s –1 from the blazar redshift. This is consistent with a scenario in which the H i cloud giving rise to the absorption is being driven outwards by the radio jet. The integrated H i 21-cm optical depth is (0.716 ± 0.037) km s –1 , implying a high H i column density, $N_{\rm H\small {I}} = (1.305 \pm 0.067) \times ({ T_{\rm s}/100\,{\rm K}}) \times 10^{20}$  cm –2 , for an assumed H i spin temperature of 100 K. We use Nickel Telescope photometry of TXS 1954+513 to infer a high rest-frame 1216 Å luminosity of (4.1 ± 1.2)  x  10 23 W Hz –1 . The z  = 1.2230 absorber towards TXS 1954+513 is only the fifth case of a detection of associated H i 21-cm absorption at z  〉 1, and is also the first case of such a detection towards an active galactic nucleus (AGN) with a rest-frame ultraviolet (UV) luminosity 〉〉10 23 W Hz –1 , demonstrating that neutral hydrogen can survive in AGN environments in the presence of high UV luminosities.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Summary〈/div〉We present the theory of parsimonious refraction interferometry and tomography where a densely populated refraction data set can be obtained from two reciprocal and several infill shot gathers. The assumptions are that the refraction arrivals are head waves, and a pair of reciprocal shot gathers and several infill shot gathers are recorded over the line of interest. Refraction traveltimes from these shot gathers are picked and spawned into 〈span style="font-style:italic;"〉O〈/span〉(〈span style="font-style:italic;"〉N〈/span〉〈sup〉2〈/sup〉) virtual refraction traveltimes generated by 〈span style="font-style:italic;"〉N〈/span〉 virtual sources, where 〈span style="font-style:italic;"〉N〈/span〉 is the number of geophones in the 2-D survey. The virtual traveltimes can be inverted to give the velocity tomogram. This enormous increase in the number of traveltime picks and associated rays, compared to the many fewer traveltimes from the reciprocal and infill shot gathers, allows for increased model resolution and a better condition number with the system of normal equations. A significant benefit is that the parsimonious survey and the associated traveltime picking can be an order-of-magnitude less time consuming than that for a standard refraction survey with a dense distribution of sources.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Summary〈/div〉We describe three achievements for a ground motion simulation. First, we propose a kinematic modelling in which rupture delay time is governed by an eikonal equation on a Riemannian manifold and develop a coupling method between the ground motion simulation and the eikonal solver. In general the rupture velocity distribution is not spatially uniform and the rupture propagation depends on a fault shape. So we derive the eikonal equation by considering the Riemannian metric of the fault surface and give a detailed discretization of its difference scheme to deal with a curved surface fault. Next, in order to explain the effect of spatially discontinuous non-uniformity of rupture velocity, we introduce an isochrones jumping intensity and obtain a new decomposed isochrones formula in general settings. It is known that the representation theorem with the Green's function can be rewritten into an expression with a contour integral by the isochrones theory. The new formula says that the known isochrones formula for ground velocity can be decomposed into a trend component and a disturbance component. The disturbance component consists of the isochrones jumping intensity. Finally, by applying our ground motion simulation coupled with the eikonal solver and the decomposed isochrones formula, we investigate some relations between the non-uniformity of the rupture velocity and pulse-like disturbance of the ground motion velocity. Our simulations show that the disturbance of velocity waveform corresponds with that of rate of change of isochrones band area. It turns out that the pulse-like disturbance of velocity waveform occurs when isochrones move across the region where rupture velocity varies discontinuously. Thus we can explain that the pulse-like disturbance of the ground motion velocity occurs when the isochrones jumping intensity has nonzero value. Moreover, as another example of application of our simulation and formula, we show a distinctive dependence of peak ground velocity upon parameters such as the rupture velocity and the distance between a fault and an observer.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Summary〈/div〉Over the last decades, electromagnetic methods have become an accepted tool for a wide range of geophysical exploration purposes and nowadays even for monitoring. Application to hydrocarbon monitoring, for example for enhanced oil recovery, is hampered by steel-cased wells, which typically exist in large numbers in producing oil fields and which distort electromagnetic fields in the subsurface. Steel casings have complex geometries as they are very thin but vertically extended; moreover, the conductivity contrast of steel to natural materials is in the range of six orders of magnitude. It is therefore computationally prohibitively costly to include such structures directly into the modelling grid, even for finite element methods. To tackle the problem we developed a method to describe steel-cased wells as series of substitute dipole sources, which effectively interact with the primary field. The new approach cannot only handle a single steel-cased well, but also an arbitrary number, and their interaction with each other. We illustrate the metal casing effect with synthetic 3-D modelling of land-based controlled source electromagnetic data. Steel casings distort electromagnetic fields even for large borehole-transmitter distances above 2 km. The effect depends not only on the distance between casing and transmitter, but also on the orientation of the transmitter to the borehole. Finally, we demonstrate how the presence of steel-cased wells can be exploited to increase the sensitivity and enhance resolution in the target region. Our results show that it is at least advisable to consider the distribution of steel-cased wells already at the planning phase of a controlled source electromagnetic field campaign.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Summary〈/div〉The volatile content in magmas is fundamental for the triggering and style of volcanic eruptions. Carbon dioxide, the second most abundant volatile component in magmas after H〈sub〉2〈/sub〉O, is the first to reach saturation upon ascent and depressurization. We investigate experimentally CO〈sub〉2〈/sub〉-bubble nucleation in trachybasalt and trachyte melts at high temperature and high pressure (〈span style="font-style:italic;"〉HT〈/span〉 and 〈span style="font-style:italic;"〉HP〈/span〉) through wetting-angle measurements on different (sialic, mafic or oxide) phenocryst phases. The presence of crystals lowers the supersaturation required for CO〈sub〉2〈/sub〉-bubble nucleation up to 37 per cent (heterogeneous nucleation, 〈span style="font-style:italic;"〉HeN〈/span〉), with a minor role of mineral chemistry. Different from H〈sub〉2〈/sub〉O-rich systems, feldspar crystals are effective in reducing required supersaturation for bubble nucleation. Our data suggest that leucite, the dominant 〈span style="font-style:italic;"〉liquidus〈/span〉 phase in ultrapotassic systems at shallow depth (i.e. 〈100 MPa), facilitates late-stage, extensive magma vesiculation through CO〈sub〉2〈/sub〉〈span style="font-style:italic;"〉HeN〈/span〉, which may explain the shifting of CO〈sub〉2〈/sub〉-rich eruptive systems towards an apparently anomalous explosive behaviour.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉The contribution of the GOCE gravity gradients to regional gravity field solutions is investigated in this study. We employ radial basis functions to recover the gravity field on regional scales over Amazon and Himalayas as our test regions. In the first step, four individual solutions based on the more accurate gravity gradient components 〈span style="font-style:italic;"〉Txx〈/span〉, 〈span style="font-style:italic;"〉Tyy〈/span〉, 〈span style="font-style:italic;"〉Tzz〈/span〉 and 〈span style="font-style:italic;"〉Txz〈/span〉 are derived. The 〈span style="font-style:italic;"〉Tzz〈/span〉 component gives better solution than the other single-component solutions despite the less accuracy of 〈span style="font-style:italic;"〉Tzz〈/span〉 compared to 〈span style="font-style:italic;"〉Txx〈/span〉 and 〈span style="font-style:italic;"〉Tyy〈/span〉. Furthermore, we determine five more solutions based on several selected combinations of the gravity gradient components including a combined solution using the four gradient components. The 〈span style="font-style:italic;"〉Tzz〈/span〉 and 〈span style="font-style:italic;"〉Tyy〈/span〉 components are shown to be the main contributors in all combined solutions whereas the 〈span style="font-style:italic;"〉Txz〈/span〉 adds the least value to the regional gravity solutions. We also investigate the contribution of the regularization term. We show that the contribution of the regularization significantly decreases as more gravity gradients are included. For the solution using all gravity gradients, regularization term contributes to about 5 per cent of the total solution. Finally, we demonstrate that in our test areas, regional gravity modelling based on GOCE data provide more reliable gravity signal in medium wavelengths as compared to pre-GOCE global gravity field models such as the EGM2008.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉Defining variations in the behaviour of the geomagnetic field through geological time is critical to understanding the dynamics of Earth's core and its response to mantle convection and planetary evolution. Furthermore, the question of whether the axial dipole dominance of the recent palaeomagnetic field persists through the whole of Earth's history is fundamental to determining the reliability of palaeogeographic reconstructions and the efficacy of the magnetosphere in shielding Earth from solar wind radiation. Previous palaeomagnetic directional studies have suggested that the palaeofield had a complex configuration in the Devonian period (419–359 Ma). Here we present new high-quality palaeointensity determinations from rocks aged between 408 and 375 Ma from the Minusa Basin (southern Siberia), and the Kola Peninsula that enable the first reliable investigation of the strength of the field during this enigmatic period. Palaeointensity experiments were performed using the thermal Thellier, microwave Thellier and Wilson methods on 165 specimens from 25 sites. Six out of eight successful sites from the Minusa Basin and all four successful sites from the Kola Peninsula produced extremely low palaeointensities (〈10 μT). These findings challenge the uniformitarian view of the palaeomagnetic field: field intensities of nearly an order of magnitude lower than Neogene values (except during relatively rare geomagnetic excursions and reversals) together with the widespread appearance of strange directions found in the Devonian suggest that the Earth's field during this time may have had a dominantly multipolar geometry. A persistent, low intensity multipolar magnetic field and associated diminished magnetosphere would increase the impact of solar particles on the Earth's magnetosphere, ionosphere and atmosphere with potential major implications for Earth's climate and biosphere.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉Glacial Isostatic Adjustment (GIA) models commonly assume a mantle with a viscoelastic Maxwell rheology and a fixed ice history model. Here, we use a Bayesian Monte Carlo approach with a Markov chain formalism to invert the global GIA signal simultaneously for the mechanical properties of the mantle and the volumes of the ice sheets, using as starting ice models two previously published ice histories. Two stress relaxing rheologies are considered: Burgers and Maxwell linear viscoelasticities. A total of 5720 global palaeo sea level records are used, covering the last 35 kyr. Our goal is not only to seek the model best fitting this data set, but also to determine and display the range of possible solutions with their respective probability of explaining the data. In all cases, our 〈span style="font-style:italic;"〉a posteriori〈/span〉 probability maps exhibit the classic character of solutions for GIA-determined mantle viscosity with two distinct peaks. What is new in our treatment is the presence of the bi-viscous Burgers rheology and the fact that we invert rheology jointly with ice history, in combination with the greatly expanded palaeo sea level records. The solutions tend to be characterized by an upper-mantle viscosity of around 5 × 10〈sup〉20〈/sup〉 Pa s with one preferred lower-mantle viscosities at 3 × 10〈sup〉21〈/sup〉 Pa s and the other more than 2 × 10〈sup〉22〈/sup〉 Pa s, a rather classical pairing. Best-fitting models depend upon the starting ice history and the stress relaxing law. A first peak (P1) has the highest probability only in the case with a Maxwell rheology and ice history based on ICE-5G, while the second peak (P2) is favoured for ANU-based ice history or Burgers stress relaxation. The latter solution also may satisfy lower-mantle viscosity inferences from long-term geodynamics and gravity gradient anomalies over Laurentia. P2 is also consistent with large Laurentian and Fennoscandian ice-sheet volumes at the Last Glacial Maximum (LGM) and smaller LGM Antarctic ice volume than in either ICE-5G or ANU. Exploration of a bi-viscous linear relaxing rheology in GIA now seems logical due to a new set of requirements to satisfy observations of transient post-seismic flow seen so ubiquitously in space gravimetry and other global geodetic data.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, $\dot{e}_t$, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature 〈span style="font-style:italic;"〉T〈/span〉〈sub〉Hc〈/sub〉 = 〈span style="font-style:italic;"〉T〈/span〉/〈span style="font-style:italic;"〉T〈/span〉〈sub〉M〈/sub〉 above which earthquakes are rarely observed (where 〈span style="font-style:italic;"〉T〈/span〉, 〈span style="font-style:italic;"〉T〈/span〉〈sub〉M〈/sub〉 are temperature and average melting temperature of constituent minerals). We find that 〈span style="font-style:italic;"〉T〈/span〉〈sub〉Hc〈/sub〉 for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to 〈span style="font-style:italic;"〉T〈/span〉〈sub〉H〈/sub〉 ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 10〈sup〉22〈/sup〉–10〈sup〉23〈/sup〉 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high 〈span style="font-style:italic;"〉T〈/span〉〈sub〉H〈/sub〉 〉 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to three orders of magnitude higher than those associated with earthquakes located where 〈span style="font-style:italic;"〉T〈/span〉〈sub〉H〈/sub〉 ≤ 0.55. We conclude that the brittle-ductile transition corresponds to the transition from long-range (regional) to short-range (localized on asperities) stress correlation.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉We introduce a wavefield gradiometry technique to estimate both isotropic and anisotropic local medium characteristics from short recordings of seismic signals by inverting a wave equation. The method exploits the information in the spatial gradients of a seismic wavefield that are calculated using dense deployments of seismic arrays. The application of the method uses the surface wave energy in the ambient seismic field. To estimate isotropic and anisotropic medium properties we invert an elliptically anisotropic wave equation. The spatial derivatives of the recorded wavefield are evaluated by calculating finite differences over nearby recordings, which introduces a systematic anisotropic error. A two-step approach corrects this error: finite difference stencils are first calibrated, then the output of the wave-equation inversion is corrected using the linearized impulse response to the inverted velocity anomaly. We test the procedure on ambient seismic noise recorded in a large and dense ocean bottom cable array installed over Ekofisk field. The estimated azimuthal anisotropy forms a circular geometry around the production-induced subsidence bowl. This conforms with results from studies employing controlled sources, and with interferometry correlating long records of seismic noise. Yet in this example, the results were obtained using only a few minutes of ambient seismic noise.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉Reverberations of teleseismic compressional (〈span style="font-style:italic;"〉P〈/span〉-) waves within a glacier or ice sheet may mask signals associated with crustal structure beneath the ice. We remove the signal associated with the ice from teleseismic 〈span style="font-style:italic;"〉P〈/span〉-waves using a wavefield downward continuation and decomposition technique that depends on known ice layer properties such as ice thickness, velocity, and attenuation. We test the method using data from nine stations in Antarctica and one station in Greenland. We deconvolve the downward-continued seismic wave vectors to create 〈span style="font-style:italic;"〉P〈/span〉-wave receiver functions that minimize the ice-layer reverberations in order to better measure signals from deeper structures. The subsurface 〈span style="font-style:italic;"〉P〈/span〉-wave receiver functions have similar sensitivities to crustal structure as those calculated from stations installed on bedrock. Synthetic experiments indicate subsurface 〈span style="font-style:italic;"〉P〈/span〉-wave receiver functions can constrain crustal structure more tightly than surface 〈span style="font-style:italic;"〉P〈/span〉-wave receiver functions when ice layer properties are known. We model the subsurface 〈span style="font-style:italic;"〉P〈/span〉-wave receiver functions using a Markov chain Monte Carlo inversion and constrain the product of crustal thickness and the column-average crustal-slowness beneath the stations. Our subglacial shear speed and thickness estimates are consistent with previous investigations at most stations. At station SUMG in south-central Greenland, our results suggest a thicker crust than from previous estimates.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉Usually, when inverting geodetic data to estimate the slip distributions on a fault, the area is made large enough to more than cover the rupture zone, with regularization producing regions of large slip with very small slip over the rest of the surface. We have developed a new inverse method which assumes that nonzero slip is confined to a rectangular region, and which jointly estimates, using Bayesian methods, the boundaries of this region as well as the slip distribution within it, using a smoothing parameter also determined as part of the inversion. Synthetic tests show that our method can successfully image deeper slip regions not resolved by previous methods, and does not produce spurious regions of nonzero slip. We apply our method to coseismic displacements measured by GPS for the 2009 L’Aquila earthquake, first determining the orientation of the fault assuming a simplified model with uniform slip, and then determining probability density functions for the location, length, and width of the rupture area and for the slip distribution. The standard deviation of slip is about 10 cm and describes a normal-faulting earthquake with a maximum slip of 88 ± 11 cm and seismic moment of $3.32_{-0.29}^{+0.30}\times 10^{18}$ N m.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Summary〈/div〉High-resolution models of seismic velocity variations constructed using body-wave tomography inform the study of the origin, fate and thermochemical state of mantle domains. In order to reliably relate these variations to material properties including temperature, composition and volatile content, we must accurately retrieve both the patterns and amplitudes of variations and quantify the uncertainty associated with the estimates of each. For these reasons, we image the mantle beneath North America with 〈span style="font-style:italic;"〉P〈/span〉-wave traveltimes from USArray using a novel method for 3-D probabilistic body-wave tomography. The method uses a Transdimensional Hierarchical Bayesian framework with a reversible-jump Markov Chain Monte Carlo algorithm in order to generate an ensemble of possible velocity models. We analyse this ensemble solution to obtain the posterior probability distribution of velocities, thereby yielding error bars and enabling rigorous hypothesis testing. Overall, we determine that the average uncertainty (1σ) of compressional wave velocity estimates beneath North America is ∼0.25 per cent 〈span style="font-style:italic;"〉dVP〈/span〉/〈span style="font-style:italic;"〉VP〈/span〉, increasing with proximity to complex structure and decreasing with depth. The addition of USArray data reduces the uncertainty beneath the Eastern US by over 50 per cent in the upper mantle and 25–40 per cent below the transition zone and ∼30 per cent throughout the mantle beneath the Western US. In the absence of damping and smoothing, we recover amplitudes of variations 10–80 per cent higher than a standard inversion approach. Accounting for differences in data coverage, we infer that the length scale of heterogeneity is ∼50 per cent longer at shallow depths beneath the continental platform than beneath tectonically active regions. We illustrate the model trade-off analysis for the Cascadia slab and the New Madrid Seismic Zone, where we find that smearing due to the limitations of the illumination is relatively minor.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉We demonstrate with synthetic and field data that with sufficiently dense sampling wave-equation-based methods such as reverse time migration (RTM), implicitly forming array receiver functions (ARFs), perform better resolution wise than migration of common conversion point (CCP) stacks of traditional receiver functions. However, even with modern array deployments the sampling requirement is typically not met for teleseismic (earthquake) data. To enable RTM imaging with sparsely (and irregularly) sampled wavefields at the surface, we use an intermediate reconstruction based on sparsity promoting optimization using a curvelet (or wave packet) representation of the data, as an important and necessary pre-processing step. To suppress artefacts, the curvelet coefficients are constrained to represent the range of known directions present in the data. We show that our proposed pre-processing procedure (which may be viewed as generating ‘missing’ traces) can produce artefact-free data for RTM even if only 20 per cent of necessary data are available in the original data set. With synthetic data, we also demonstrate that if the sampling criteria is not met, CCP can produce results that are superior over wave-equation methods such as RTM. As a proof-of-concept with field data, we image the structure of the crust beneath the Himalayas with passive-source RTM of teleseismic data from Hi-CLIMB project. For Hi-CLIMB data, the CCP and RTM results are similar because sampling is still too sparse for RTM and the structure is simple enough for successful CCP. Both results are improved by wavefield regularization and reveal that the Moho is continuous beneath most of the array, and not fragmented as suggested by some earlier studies.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉Elastic full waveform inversion (EFWI) aims to reduce the misfit between recorded and modelled multicomponent seismic data for deducing a detailed model of elastic parameters in the subsurface. Because the explicit computation and inversion of the Hessian matrix is extremely resource intensive, a gradient-based (rather than Hessian-based) minimization is generally applied for large-scale applications. However, the multiparameter trade-off effects cause cross-talks in the computed gradients and thus severely affect the convergence and the quality of the inverted model. Recently, preconditioning the gradients based on elastic wave mode decomposition has been suggested for mitigating the parameter trade-offs in the EFWI process. In this paper, we propose a mode decomposition (MD)-based EFWI approach in which the preconditioned gradients are obtained through the cross-correlation of the forward and decomposed adjoint wavefields in the time domain. Based on the decomposed Frechét derivatives, we explain the mechanism of this approach through analyses of Hessian and resolution matrices and comparison with the Gauss–Newton gradients. Numerical examples of a simple fluid-saturated model and the Marmousi-II model demonstrate that the MD-based preconditioned conjugate-gradient approach can mitigate the trade-off between the 〈span style="font-style:italic;"〉P〈/span〉- and 〈span style="font-style:italic;"〉S〈/span〉-wave velocities and achieve fast convergence without any Hessian-involved calculations.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉We use frequency domain methods usually applied to volcanic tremor to analyse ground based seismic recordings of a helicopter. We preclude misinterpretations of tremor sources and show alternative applications of our seismological methods. On a volcano, the seismic source can consist of repeating, closely spaced, small earthquakes. Interestingly, similar signals are generated by helicopters due to repeating pressure pulses from the rotor blades. In both cases the seismic signals are continuous and referred to as tremor. As frequency gliding is in this case merely caused by the Doppler effect, not a change in the source, we can use its shape to deduce properties of the helicopter and its flight path. We show in this analysis that the number of rotor blades, rotor revolutions per minute, helicopter speed, flight direction, altitude and location can be deduced from seismometer recordings. Access to GPS determined flight path data from the helicopter offers us a robust way to test our location method.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉An analytical solution is derived concerning the linear run-up for any given initial wave generated over a sloping bathymetry. Due to the simplicity of the linear formulation, complex transformations are unnecessary, hence the shoreline motion is directly obtained in terms of the initial wave. This result supports not only maximum run-up invariance between linear and nonlinear theories but also the time evolution of shoreline motion and velocity, exhibiting good agreement with the nonlinear theory. The present formulation also allows quantifying the shoreline motion numerically from a customized initial waveform, including non-smooth functions. This is useful for numerical tests, laboratory experiments or realistic cases in which the initial disturbance might be retrieved from seismic data rather than using a theoretical model. It is also shown that the run-up calculation for the real case studied is consistent with the field observations.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉In studies of the magnetic properties of soils, the frequency-dependent magnetic susceptibility percentage (〈span style="font-style:italic;"〉χ〈/span〉〈sub〉FD〈/sub〉%) is often used for the identification of ultrafine magnetically superparamagnetic/stable single-domain (SP/SSD) particles. This parameter is commonly used as an indicator for increased pedogenesis. In strongly magnetic soils, the SP/SSD magnetic signal (mostly bio-pedogenic) may be masked by lithological signals; making pedogenesis hard to detect. In this study, we compare results for the detection of ultrafine SP/SSD magnetic particles in andic soils using two instruments: a Bartington MS2B dual-frequency meter and an AGICO Kappabridge MFK1-FA. In particular, the study focuses on the effect of pedogenesis by investigating the relationship between specific soil magnetic and chemical properties (soil organic carbon and pH〈sub〉H2O〈/sub〉). The values of 〈span style="font-style:italic;"〉χ〈/span〉〈sub〉FD〈/sub〉% obtained with the MS2B varied from 2.4 to 5.9 per cent, and mass-specific magnetic susceptibility (〈span style="font-style:italic;"〉χ〈/span〉〈sub〉LF〈/sub〉) from 283 to 1688 × 10〈sup〉−8〈/sup〉 m〈sup〉3〈/sup〉 kg〈sup〉−1〈/sup〉, while values of 〈span style="font-style:italic;"〉χ〈/span〉〈sub〉FD〈/sub〉% and 〈span style="font-style:italic;"〉χ〈/span〉〈sub〉LF〈/sub〉 obtained with the MFK1-FA varied from 2.7 to 8.2 per cent and from 299 to 1859 × 10〈sup〉−8〈/sup〉 m〈sup〉3〈/sup〉 kg〈sup〉−1〈/sup〉, respectively. Our results suggest that the detection of the SP/SSD magnetic fraction can be accomplished by comparing relative trends of 〈span style="font-style:italic;"〉χ〈/span〉〈sub〉FD〈/sub〉% along the soil profile. Moreover, the discrimination between bio-pedogenic and lithogenic magnetic contributions in the SP/SSD fraction is possible by comparing the 〈span style="font-style:italic;"〉χ〈/span〉〈sub〉FD〈/sub〉% and 〈span style="font-style:italic;"〉χ〈/span〉〈sub〉LF〈/sub〉 data determined in the fine earth (〈2 mm) and the coarse fraction (4–10 mm) samples down the soil profile.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉We present and use a phase coherence approach to identify seismic signals that have similar path effects but different source time functions: co-located earthquakes and tremor. The method used is a phase coherence-based implementation of empirical matched field processing, modified to suit tremor analysis. It works by comparing the frequency-domain phases of waveforms generated by two sources recorded at multiple stations. We first cross-correlate the records of the two sources at a single station. If the sources are co-located, this cross-correlation eliminates the phases of the Green’s function. It leaves the relative phases of the source time functions, which should be the same across all stations so long as the spatial extent of the sources are small compared with the seismic wavelength. We therefore search for cross-correlation phases that are consistent across stations as an indication of co-located sources. We also introduce a method to obtain relative locations between the two sources, based on back-projection of interstation phase coherence. We apply this technique to analyse two tremor-like signals that are thought to be composed of a number of earthquakes. First, we analyse a 20 s long seismic precursor to a 〈span style="font-style:italic;"〉M〈/span〉 3.9 earthquake in central Alaska. The analysis locates the precursor to within 2 km of the mainshock, and it identifies several bursts of energy—potentially foreshocks or groups of foreshocks—within the precursor. Second, we examine several minutes of volcanic tremor prior to an eruption at Redoubt Volcano. We confirm that the tremor source is located close to repeating earthquakes identified earlier in the tremor sequence. The amplitude of the tremor diminishes about 30 s before the eruption, but the phase coherence results suggest that the tremor may persist at some level through this final interval.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-01-02
    Description: Recent photometric analyses of the colour–magnitude diagrams of young massive clusters (YMCs) have found evidence for splitting in the main sequence and extended main-sequence turn-offs, both of which have been suggested to be caused by stellar rotation. Comparison of the observed main-sequence splitting with models has led various authors to suggest a rather extreme stellar rotation distribution, with a minority (10–30 per cent) of stars with low rotational velocities and the remainder (70–90 per cent) of stars rotating near the critical rotation (i.e. near break-up). We test this hypothesis by searching for Be stars within two YMCs in the Large Magellanic Cloud (NGC 1850 and NGC 1856), which are thought to be critically rotating stars with decretion discs that are (partially) ionized by their host stars. In both clusters, we detect large populations of Be stars at the main-sequence turn-off (~30–60 per cent of stars), which supports previous suggestions of large populations of rapidly rotating stars within massive clusters.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-01-02
    Description: The mass of the Local Group (LG) is a crucial parameter for galaxy formation theories. However, its observational determination is challenging – its mass budget is dominated by dark matter that cannot be directly observed. To meet this end, the posterior distributions of the LG and its massive constituents have been constructed by means of constrained and random cosmological simulations. Two priors are assumed – the cold dark matter model that is used to set up the simulations, and an LG model that encodes the observational knowledge of the LG and is used to select LG-like objects from the simulations. The constrained simulations are designed to reproduce the local cosmography as it is imprinted on to the Cosmicflows-2 data base of velocities. Several prescriptions are used to define the LG model, focusing in particular on different recent estimates of the tangential velocity of M31. It is found that (a) different v tan choices affect the peak mass values up to a factor of 2, and change mass ratios of M M31 to M MW by up to 20 per cent; (b) constrained simulations yield more sharply peaked posterior distributions compared with the random ones; (c) LG mass estimates are found to be smaller than those found using the timing argument; (d) preferred Milky Way masses lie in the range of (0.6–0.8) x 10 12  M ; whereas (e) M M31 is found to vary between (1.0–2.0) x 10 12  M , with a strong dependence on the v tan values used.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2017-01-02
    Description: Statistical analysis of Faraday rotation measure (RM) maps of the intracluster medium (ICM) of galaxy clusters provides a unique tool to evaluate some spatial features of the magnetic fields there. Its combination with numerical simulations of magnetohydrodynamic (MHD) turbulence allows the diagnosis of the ICM turbulence. Being the ICM plasma weakly collisional, the thermal velocity distribution of the particles naturally develops anisotropies as a consequence of the large-scale motions and the conservation of the magnetic moment of the charged particles. A previous study ( Paper I ) analysed the impact of large-scale thermal anisotropy on the statistics of RM maps synthesized from simulations of turbulence; these simulations employed a collisionless MHD model that considered a tensor pressure with uniform anisotropy. In this work, we extend that analysis to a collisionless MHD model in which the thermal anisotropy develops according to the conservation of the magnetic moment of the thermal particles. We also consider the effect of anisotropy relaxation caused by the microscale mirror and firehose instabilities. We show that if the relaxation rate is fast enough to keep the anisotropy limited by the threshold values of the instabilities, the dispersion and power spectrum of the RM maps are indistinguishable from those obtained from collisional MHD. Otherwise, there is a reduction in the dispersion and steepening of the power spectrum of the RM maps (compared to the collisional case). Considering the first scenario, the use of collisional MHD simulations for modelling the RM statistics in the ICM becomes better justified.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-01-02
    Description: A key challenge in understanding the feedback mechanism of active galactic nucleus (AGN) in Brightest Cluster Galaxies (BCGs) is the inherent rarity of catching an AGN during its strong outburst phase. This is exacerbated by the ambiguity of differentiating between AGN and clusters in X-ray observations. If there is evidence for an AGN then the X-ray emission is commonly assumed to be dominated by the AGN emission, introducing a selection effect against the detection of AGN in BCGs. In order to recover these ‘missing’ clusters, we systematically investigate the colour–magnitude relation around some ~3500 ROSAT All-Sky Survey selected AGN, looking for signs of a cluster red sequence. Amongst our 22 candidate systems, we independently rediscover several confirmed systems, where a strong AGN resides in a central galaxy. We compare the X-ray luminosity to red sequence richness distribution of our AGN candidate systems with that of a similarly selected comparison sample of ~1000 confirmed clusters and identify seven ‘best’ candidates (all of which are BL Lac objects), where the X-ray flux is likely to be a comparable mix between cluster and AGN emission. We confirm that the colours of the red sequence are consistent with the redshift of the AGN, that the colours of the AGN host galaxy are consistent with AGN, and, by comparing their luminosities with those from our comparison clusters, confirm that the AGN hosts are consistent with BCGs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2017-01-02
    Description: Prior statistical knowledge of atmospheric turbulence is essential for designing, optimizing and evaluating tomographic adaptive optics systems. We present the statistics of the vertical profiles of $C_N^2$ and the outer scale at Maunakea estimated using a SLOpe Detection And Ranging (SLODAR) method from on-sky telemetry taken by a multi-object adaptive optics (MOAO) demonstrator, called RAVEN, on the Subaru telescope. In our SLODAR method, the profiles are estimated by fitting the theoretical autocorrelations and cross-correlations of measurements from multiple Shack–Haltmann wavefront sensors to the observed correlations via the non-linear Levenberg–Marquardt Algorithm (LMA). The analytical derivatives of the spatial phase structure function with respect to its parameters for the LMA are also developed. From a total of 12 nights in the summer season, a large ground $C_N^2$ fraction of 54.3 per cent is found, with median estimated seeing of 0.460 arcsec. This median seeing value is below the results for Maunakea from the literature (0.6–0.7 arcsec). The average $C_N^2$ profile is in good agreement with results from the literature, except for the ground layer. The median value of the outer scale is 25.5 m and the outer scale is larger at higher altitudes; these trends of the outer scale are consistent with findings in the literature.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉We present a new method to improve the convergence of the well-known Parker's formula for the modelling of gravity and magnetic fields caused by sources with complex topography. In the original Parker's formula, two approximations are made, which may cause considerable numerical errors and instabilities: (1) the approximation of the forward and inverse continuous Fourier transforms using their discrete counterparts, the forward and inverse Fast Fourier Transform (FFT) algorithms; (2) the approximation of the exponential function with its Taylor series expansion. In a previous paper of ours, we have made an effort addressing the first problem by applying the Gauss-FFT method instead of the standard FFT algorithm. The new Gauss-FFT based method shows improved numerical efficiency and agrees well with space-domain analytical or hybrid analytical-numerical algorithms. However, even under the simplifying assumption of a calculation surface being a level plane above all topographic sources, the method may still fail or become inaccurate under certain circumstances. When the peaks of the topography approach the observation surface too closely, the number of terms of the Taylor series expansion needed to reach a suitable precision becomes large and slows the calculation. We show in this paper that this problem is caused by the second approximation mentioned above, and it is due to the convergence property of the Taylor series expansion that the algorithm becomes inaccurate for certain topographic models with large amplitudes. Based on this observation, we present a modified Parker's method using low rank approximation of the exponential function in virtue of the Chebfun software system. In this way, the optimal rate of convergence is achieved. Some pre-computation is needed but will not cause significant computational overheads. Synthetic and real model tests show that the method now works well for almost any practical topographic model, provided that the assumption, that the entire topographic mass lies below the observation surface, is met.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉Seismic velocities in the sediments containing gas hydrates show a marked increase compared to the background, intuitively implying that there would be a reduction in the seismic attenuation (Q〈sup〉−1〈/sup〉) of such sediments. However, the attenuation measurements carried out in the sonic frequency range from various gas hydrate provinces show that there is a notable increase in seismic attenuation within the gas hydrate layers and the results obtained are counter-intuitive. In this work we try to compare the attenuation derived by applying frequency shift method to the multichannel seismic (MCS) and sonic data sets at the same location in the Krishna-Godavari (KG) basin. The role of complex geology in attenuating the seismic signal is also studied by generating synthetic seismic data for different geological models and by computing the corresponding attenuation. It has been found that the Q〈sup〉−1〈/sup〉 obtained from the field seismic data compares well with the Q〈sup〉−1〈/sup〉 computed for a simple layered geological model. The results indicate that the Q〈sup〉−1〈/sup〉 (0.0029) from field seismic data is ∼4.3 times lower than Q〈sup〉−1〈/sup〉 (0.0123–0.0125) obtained from the sonic data, implying that the thickness of the gas hydrate layer in the KG basin is not sufficient enough to average the bulk properties. Our results also indicate that there could be substantial contribution of the pore scale interaction to the observed attenuation.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉Palaeomagnetic and rock magnetic studies of impact-related rocks can provide important constraints for deciphering geophysical records from suspected impact structures, their geochronology, and, in the case of very large impacts, their effect on the Earth as a whole. However, the palaeomagnetic record in impact-related rocks may be ambiguous because of the uncertain origin of their natural remanent magnetization (NRM). Towards this end, we carried out a comprehensive rock magnetic and mineralogical study of tagamites (impact melts) from the Jänisjärvi astrobleme, Russian Karelia. Chemical composition of magnetic minerals and non-magnetic matrix was evaluated by scanning electron microscopy (SEM) and X-ray analysis. Magnetic minerals were identified using thermomagnetic analysis at high and low temperatures, whereas their domain state was evaluated from hysteresis measurements and magnetic force microscopy. Jänisjärvi tagamites appear to belong to two essentially different types arising from the differences in the impact melt crystallization conditions. Type I tagamites were likely formed by an extremely rapid cooling of a superhot melt with initial temperatures well above 2000 °C. Type II tagamites originate from cooler and more iron-enriched melt. Common to the two types is that they both contain a substantial amount of fine inclusions in silicate matrix tens of nanometres to few micrometres in size, which appear to be a major, in some cases dominant, magnetic mineral carrying a significant part of rocks NRM. Structurally, these inclusions are heterogeneous objects consisting of two phases showing both chemical and magnetic contrast.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉Previous work has demonstrated that geoelectrical measurements, acquired either along the Earth’s surface or in boreholes, can be sensitive to the presence of fractures. However, a lack of numerical approaches that are well suited to modelling electric current flow in fractured media prevents us from systematically exploring the links between geoelectrical measurements and fractured rock properties. To address this issue, we present a highly computationally efficient methodology for the numerical simulation of geoelectrical data in 2.5-D in complex fractured domains. Our approach is based upon a discrete-dual-porosity formulation, whereby the fractures and rock matrix are treated separately and coupled through the exchange of electric current between them. We first validate our methodology against standard analytical and finite-element solutions. Subsequent use of the approach to simulate geoelectrical data for a variety of different fracture configurations demonstrates the sensitivity of these data to important parameters such as the fracture density, depth, and orientation.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉We study the seismic source of the 2015 (〈span style="font-style:italic;"〉M〈/span〉〈sub〉w〈/sub〉 6.7) Jujuy, Argentina intermediate depth earthquake. We first constrain the fault plane by using a teleseismic inversion and by determining the aftershock distribution. Then, we perform kinematic and dynamic inversions to retrieve the parameters that control the rupture process, using data at regional distances, and modelling the source as an elliptical patch. Best models suggest a subshear rupture propagation with a duration of ∼5 s. Results from the dynamic modelling suggest a stress drop of 11.87 MPa and a fracture energy rate of 2.95 MJ m〈sup〉−2〈/sup〉, which are slightly less but of the same order as those of other events of similar size. Finally, we perform a Monte-Carlo inversion to explore the behaviour of the frictional parameters in the solution space, and then we compare our results with other intraslab events. We find that the 〈span style="font-style:italic;"〉κ〈/span〉 parameter (ratio between strain energy and fracture energy) and the relation between seismic moment and stress drop are similar for all the considered events.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Summary〈/div〉The interferometric synthetic aperture radar (InSAR) data from the Japan Aerospace Exploration Agency ALOS-2 satellite show possible deformation associated with the 2016 January 6 North Korean nuclear test whereas the European Space Agency Sentinel-1A data are decorrelated. This is the first time that deformation related to a nuclear test has been measured since 1992. Here, I present two interpretations of the observed deformation: First, the deformation can be explained by a triggered landslide on the western slope of Mt Mantap, with a displacement of up to 10 cm across a patch of 1 km〈sup〉2〈/sup〉. Second, the observation may be from uplift created by the nuclear explosion. In the second interpretation, the location, depth and cavity size can be estimated from a topography-corrected homogenous half-space model (Mogi). The preferred location of the 2016 January 6 event is 41.2993°N 129.0715°E, with an uncertainty of 100 m. The estimated depth is 420–700 m and the cavity radius is 23–27 m. Based on empirical data and the assumption of granite as the host rock, the yield is estimated to be 11.6–24.4 kilotons of TNT, which is consistent with previous results based on seismic data. With these two interpretations, I demonstrate that InSAR data provide an independent tool to locate and estimate source characteristics of nuclear tests in North Korea. The ambiguity of interpretation is mainly due to the limited InSAR data acquisition. Future frequent data collection by current and upcoming InSAR satellites will allow full use of InSAR for nuclear monitoring and characterization in North Korea and around the world.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉We present azimuthally anisotropic Rayleigh group velocity models from 8 to 35 s both offshore and onshore of the South Island of New Zealand. We use MOANA (Marine Observations of Anisotropy Near Aotearoa) broad-band ocean seismic data in combination with on land data from the New Zealand National Seismography Network to investigate the seismic structure of the flanks of the Australian–Pacific plate boundary. At 8 s, we observe low offshore group velocities best explained by the influence of the water layer and thick water-laden sediments. At long periods (20–30 s), group velocities are lower on the South Island relative to its offshore flanks, due to thickened crust beneath the island, with the lowest velocities primarily beneath the Southern Alps. Group velocity azimuthal anisotropy fast directions near the Alpine Fault align with the direction of relative plate motion between the Australian and Pacific plates. In the southern portion of the island, fast directions rotate anticlockwise, likely in response to a decrease in dextral shearing away from the plate boundary. Azimuthal anisotropy fast directions align with absolute plate motion offshore on the Pacific plate. Based on the depth sensitivity of our observations, we suggest diffuse deformation occurs throughout the crust. Our observations match trends in previous Pn anisotropy and SKS shear wave splitting observations, and therefore suggest a consistent pattern of distributed deformation throughout the lithosphere.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉Significant lateral and depth variations of the inner core's properties, such as the large-scale hemispherical pattern, have been confirmed by a variety of seismological observations. However it is still unclear which dynamic processes in the core are responsible for these variations. Small-scale volumetric heterogeneity has been detected in the top layer of the inner core by PKiKP coda observations. Studies of these small-scale heterogeneities can provide critical information, such as the degree of alignment of iron crystals, the presence of possible partial melt and the grain size of iron crystals, all of which can be used to constrain the dynamic processes of the inner core. However, most previous observations sampled the inner core beneath the Pacific Ocean and Asia, often in the inner core's ‘eastern hemisphere’. We use seismic stations in the North America, including the Earthscope Transportable Array, to look at PKiKP and its coda waves. We find 21 events with clear signals. In agreement with previous studies, inner core scattering (ICS), resulting in clear PKiKP coda, is found at epicentral distances of 60°–95°. However, the ICS we observe in these 21 western hemisphere events is weaker than previously reported for the eastern hemisphere. Comparing our observations with numerical simulations, we conclude that this relatively weak ICS indicates small-scale heterogeneity in at least the top layer of the inner core beneath Central America. Combining our clear observations with previous studies suggests either a hemispherical difference, or a regional variation, of small-scale heterogeneity in the inner core.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉The Qinling Orogen Belt (QOB), Weihe Graben (WG) and the southern margin of the Ordos Block (SOB), lying on the central portion of China, had been involved into the amalgamation of China (Asian continent) through subduction, collision to exhumation processes. The Moho fabrics beneath this region, recorded part of the evolution. Therefore, its thickness and internal structure may provide significant knowledge and contribute to the understanding the intracontinental deformation of central China. In this paper, in order to place constrain on the nature beneath the study area, nine large dynamite shots (the charge ≥500 kg) used to infer the internal structure and characteristics of the crustal boundary. We analyse the specific characteristics of the Moho reflection, the amplitude decay curves in near vertical zone and generate a single-fold profile; in addition, it also address the internal structure and discuss its implication. The Moho is approximately at the depth of 39 km beneath the North Qinling Orogen (NQB) and the WG, and at the depth of 42 km beneath the SOB. The Moho shows a subtle uplift and the crust is thin under the NQB. The north-dipping reflectors between the lower crust and the uppermost mantle extend to the middle of the WG, and the south-dipping reflectors in the lower crust of the NQB are truncated by the Moho, therefore both of features and structures exhibit a ‘Crocodile’ like structure and are most probably the remnants of the amalgamation of the NQB and the NCB. The transparent reflection Moho beneath the southern part of the WG may indicate the existence of a magma channel. The Weihe Fault is interpreted as a shallow, near-surface feature resulted from the upwelling magma; SOB represents a relatively weak region and could accommodate the crustal shortening during the formation of the China continent in Triassic.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Summary〈/div〉Large-amplitude collar wave covering formation signals is still a tough problem in acoustic logging-while-drilling (LWD) measurements. In this study, we investigate the propagation and energy radiation characteristics of the monopole collar wave and the effects of grooves on reducing the interference to formation waves by finite-difference calculations. We found that the collar wave radiates significant energy into the formation by comparing the waveforms between a collar within an infinite fluid, and the acoustic LWD in different formations with either an intact or a truncated collar. The collar wave recorded on the outer surface of the collar consists of the outward-radiated energy direct from the collar (direct collar wave) and that reflected back from the borehole wall (reflected collar wave). All these indicate that the significant effects of the borehole-formation structure on collar wave were underestimated in previous studies. From the simulations of acoustic LWD with a grooved collar, we found that grooves broaden the frequency region of low collar-wave excitation and attenuate most of the energy of the interference waves by multireflections. However, grooves extend the duration of the collar wave and convert part of the collar-wave energy originally kept in the collar into long-duration Stoneley wave. Interior grooves are preferable to exterior ones because both the low-frequency and the high-frequency parts of the collar wave can be reduced and the converted inner Stoneley wave is relatively difficult to be recorded on the outer surface of the collar. Deeper grooves weaken the collar wave more greatly, but they result in larger converted Stoneley wave especially for the exterior ones. The interference waves, not only the direct collar wave but also the reflected collar wave and the converted Stoneley waves, should be overall considered for tool design.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Summary〈/div〉The oceanic crustal and uppermost lithospheric mantle structure across the Gloria Fault (GF) transcurrent plate boundary between Africa and Eurasia in the Northeast Atlantic is investigated based on seismic reflection, seismic refraction and wide-angle reflection data. This experiment used 18 ocean bottom stations along an N–S 150 km long traverse together with acquisition of a multichannel seismic reflection profile. Modeling of 〈span style="font-style:italic;"〉P〈/span〉 and 〈span style="font-style:italic;"〉S〈/span〉 seismic waves and gravimetric anomalies allowed estimation of 〈span style="font-style:italic;"〉P〈/span〉- and 〈span style="font-style:italic;"〉S〈/span〉-wave velocities, density, Poisson's ratio and discussion of a compositional model. A five-layer model is proposed in which layers 1–3 correspond to normal sediments through typical oceanic crust layers 2 and 3. Layer 5 yielded mantle velocities above 7.9 km s〈sup〉−1〈/sup〉. Layer 4 with 4 km of thickness has 〈span style="font-style:italic;"〉Vp〈/span〉 velocities between 7.1 and 7.4 km s〈sup〉−1〈/sup〉 and is clearly separated from typical oceanic crust and mantle layers. Comparison with natural analogues and published lab measurements suggest that layer 4 can be a mix of lithologies that comply with the estimated 〈span style="font-style:italic;"〉P〈/span〉 and 〈span style="font-style:italic;"〉S〈/span〉 velocities and computed Poisson's ratio and densities, such as, olivine cumulates, peridotite, gabbro and hydrated mantle. We favour the tectonic process that produces secondary porosity from which results serpentinization due to sea water circulation in fractures. Structural and seismic stratigraphic interpretation of the reflection profile shows that Neogene to recent tectonic deformation on this segment of the plate boundary concentrated on the southern side of the GF, that is, the Africa plate.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉In a lossy medium with complex frequency-dependent wave speed both rays and plane waves at an interface should satisfy the dispersion relation (that is, the wave equation), the radiation condition (the amplitude should go to zero at infinity) and the horizontal complex slowness should be continuous (Snell's law). It is known that this may lead to a transmitted wave which violates the radiation condition and which also causes problems with the phase of the reflection coefficient. In fact, ray-tracing algorithms and analytical evaluations of the reflection and transmission coefficients in anelastic media may lead to non-physical solutions related to the complex square roots of the vertical slowness and polarizations. The steepest-descent approximation with complex horizontal slowness involves non-physical complex horizontal distances, and in some cases also a non-physical vertical slowness that violates the radiation condition. Similarly, the reflection and transmission coefficients and ray-tracing codes obtained with this approach yields wrong results. In order to tackle this problem, we choose the stationary-phase approximation with real horizontal slowness. This gives real horizontal distances, the radiation condition is always satisfied and the reflection and transmission coefficients are correct. This is shown by comparison to full-wave space-time modelling results by computing the reflection and transmission coefficients and respective phase angles from synthetic seismograms. This numerical evaluation is based on a 2-D wavenumber-frequency Fourier transform. The results indicate that the stationary-phase method with a real horizontal slowness provides the correct physical solution.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Summary〈/div〉The Geysers geothermal reservoir in northern California is the site of numerous studies of both seismicity induced by injection of fluids and seismicity triggered by other earthquakes. Data from a controlled experiment in the northwest part of The Geysers in the time period 2011 to 2015 are used to study these induced and triggered earthquakes and possible differences between them. Causal solutions to the elastic equations for a porous medium show how fluid injection generates fast elastic and diffusion waves followed by a much slower diffusive wake. Calculations of fluid increment, fluid pressure and elastic stress are used to investigate both when and why seismic failure takes place. Taking into account stress concentrations caused by material heterogeneity leads to the conclusion that fluid injection by itself can cause seismic activity with no need for tectonic forces. Induced events that occur at early times are best explained by changes in stress rate, while those that occur at later times are best explained by changes in stress. While some of the seismic activity is clearly induced by injection of fluids, also present is triggered seismicity that includes aftershock sequences, swarms of seismicity triggered by other earthquakes at The Geysers and clusters of multiple earthquakes. No basic differences are found between the source mechanisms of these different types of earthquakes.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉To describe errors in the data, Gaussian distributions naturally come to mind. In many practical instances, indeed, Gaussian distributions are appropriate. In the broad field of geomagnetism, however, it has repeatedly been noted that residuals between data and models often display much sharper distributions, sometimes better described by a Laplace distribution. In this study, we make the case that such non-Gaussian behaviours are very likely the result of what is known as mixture of distributions in the statistical literature. Mixtures arise as soon as the data do not follow a common distribution or are not properly normalized, the resulting global distribution being a mix of the various distributions followed by subsets of the data, or even individual datum. We provide examples of the way such mixtures can lead to distributions that are much sharper than Gaussian distributions and discuss the reasons why such mixtures are likely the cause of the non-Gaussian distributions observed in geomagnetism. We also show that when properly selecting subdata sets based on geophysical criteria, statistical mixture can sometimes be avoided and much more Gaussian behaviours recovered. We conclude with some general recommendations and point out that although statistical mixture always tends to sharpen the resulting distribution, it does not necessarily lead to a Laplacian distribution. This needs to be taken into account when dealing with such non-Gaussian distributions.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Summary〈/div〉This paper outlines an analytical model of crack growth induced permeability changes. A theoretical solution of effective permeability of cracked porous media is derived. The fluid flow obeys Poisseuille's law along the crack and Darcy's law in the porous matrix. This solution exhibits a percolation threshold for any type of crack distribution apart from a parallel crack distribution. The physical behaviour of fluid flow through a cracked porous material is well reproduced by the proposed model. The presence of this effective permeability coupling to analytical expression of crack growth under compression enables the modelling of the permeability variation due to stress-induced cracking in a porous rock. This incorporation allows the prediction of the permeability change of a porous rock embedding an anisotropic crack distribution from any initial crack density, that is, lower, around or upper to percolation threshold. The interaction between cracks is not explicitly taken into account. The model is well applicable both to micro- and macrocracks.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉Electrical conductance 〈span style="font-style:italic;"〉G〈/span〉 at 100 kHz of Berea sandstone initially saturated with varying NaCl concentrations was measured by an impedance meter at decreasing water saturation. The obtained conductance 〈span style="font-style:italic;"〉G〈/span〉 values can be well simulated by the model equation composed of conductance of bulk pore water and that of mineral surfaces by introducing both tortuosities of bulk pore water τ〈sub〉b〈/sub〉 and mineral surfaces τ〈sub〉s〈/sub〉. The surface conductivity Σ〈sub〉s〈/sub〉 = 2.1 × 10〈sup〉− 10〈/sup〉 S and the tortuosity of mineral surfaces τ〈sub〉s〈/sub〉 = 2.6 in this equation can be valid for most of the data at varying water saturation except for the lowest water saturation (〈span style="font-style:italic;"〉S〈/span〉〈sub〉w〈/sub〉 = 0.05). The tortuosity of pore water τ〈sub〉b〈/sub〉 increased from 1.7 at 〈span style="font-style:italic;"〉S〈/span〉〈sub〉w〈/sub〉 = 1.0 to 15 at 〈span style="font-style:italic;"〉S〈/span〉〈sub〉w〈/sub〉 = 0.05 with a power law relationship. The present electrical conduction model with double tortuosities of bulk pore water τ〈sub〉b〈/sub〉 and mineral surfaces τ〈sub〉s〈/sub〉 can be considered as an alternative expression of the combined Archie's first and second laws in terms of tortuosities and would be useful for describing conductance of electrolyte containing partially saturated rocks including very low water saturation.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉We present the first 3 months of aftershock activity following the 2015 April 25 Gorkha earthquake 〈span style="font-style:italic;"〉M〈/span〉〈sub〉w〈/sub〉 7.8 recorded on the Nepalese Seismic network. We deployed an automatic procedure composed of three main stages: (1) coarse determination of the 〈span style="font-style:italic;"〉P〈/span〉 and 〈span style="font-style:italic;"〉S〈/span〉 onsets; (2) phase association to declare events and (3) iterative addition and refinement of onsets using the Kurtosis characteristic function. In total 9188 events could be located in the Kathmandu region with the majority having small location errors (〈4.5, 9 and 10 km in the 〈span style="font-style:italic;"〉X-, Y-〈/span〉 and 〈span style="font-style:italic;"〉Z〈/span〉-directions, respectively). Additionally, we propose a new attenuation law to estimate local magnitudes in the region. This new seismic catalogue reveals a detailed insight into the Gorkha aftershock sequence and its relation to the main shock rupture models and tectonic structures in the region. Most aftershocks fall within the Main Himalayan Thrust (MHT) shear zone or in its hangingwall. Significant temporal and lateral variations of aftershocks location are observed among them: (1) three distinct stages, highlighting subsequent jump-offs at the easternmost termination, (2) the existence of a seismic gap north of Kathmandu which matches with a low slip zone in the rupture area of the main shock, (3) the confinement of seismic activity in the trace of the May 12 〈span style="font-style:italic;"〉M〈/span〉〈sub〉w〈/sub〉 7.3 earthquake within the MHT and its hangingwall through a 30 × 30 km〈sup〉2〈/sup〉 region and (4) a shallow westward-dipping structure east of the Kathmandu klippe. These new observations with the inferred tectonic structures at depth suggest a tectonic control of part of the aftershock activity by the lateral breaks along the MHT and by the geometry of the duplex above the thrust.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Summary〈/div〉Convection in Earth's core is a viable mechanism for generating MAC waves when the top of the core is stably stratified. We quantify the generation mechanism by extending the physical description of MAC waves to include a source term due to buoyancy forces in the convecting part of the core. Solutions for the forced motion are obtained using a Green's function, which is constructed from the eigenfunctions for the unforced motion. When the source term is evaluated using the output of a numerical geodynamo model, the largest excitation occurs at even spherical harmonic degrees, corresponding to waves with symmetric azimuthal flow about the equator. We also find that the magnitude of the source term decreases at periods shorter than about 60 yr. As a result most of the wave generation is confined to waves with periods of 60 yr or longer. Quantitative predictions for the wave amplitudes depend on the projection of the source term into the eigenfunction of the waves. Strong stratification limits the penetration of density anomalies into the stratified layer, which means that the source term is confined to the lowermost part of the layer. Overtones of MAC waves with large amplitudes in the lower part of the stratified layer are more effectively generated by convection, even though these waves are heavily damped by magnetic diffusion. Generation of MAC waves by convection establishes a physical link between observable wave motion and deeper convective processes. Detection of changes in the amplitude and phase of MAC waves would constrain the generation processes and offer insights into the nature of the convection.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉The paper ‘Hydrostratigraphy characterization of the Floridan aquifer system using ambient seismic noise’ was originally published in 209(2), 876–889. The original article has been updated to correct a spelling mistake in one of the authors’ names. The publisher wishes to apologise for the mistake.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉The 3-D subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a 3-D velocity model of the upper crust beneath the southern Korean Peninsula using 19 935 〈span style="font-style:italic;"〉P〈/span〉-wave arrivals from 747 earthquakes recorded by high-density local seismic networks. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-04-19
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉The perfectly matched layer (PML) is an efficient absorbing technique for numerical wave simulation. The complex frequency-shifted PML (CFS-PML) introduces two additional parameters in the stretching function to make the absorption frequency dependent. This can help to suppress converted evanescent waves from near grazing incident waves, but does not efficiently absorb low-frequency waves below the cut-off frequency. To absorb both the evanescent wave and the low-frequency wave, the double-pole CFS-PML having two poles in the coordinate stretching function was developed in computational electromagnetism. Several studies have investigated the performance of the double-pole CFS-PML for seismic wave simulations in the case of a narrowband seismic wavelet and did not find significant difference comparing to the CFS-PML. Another difficulty to apply the double-pole CFS-PML for real problems is that a practical strategy to set optimal parameter values has not been established. In this work, we study the performance of the double-pole CFS-PML for broad-band seismic wave simulation. We find that when the maximum to minimum frequency ratio is larger than 16, the CFS-PML will either fail to suppress the converted evanescent waves for grazing incident waves, or produce visible low-frequency reflection, depending on the value of α. In contrast, the double-pole CFS-PML can simultaneously suppress the converted evanescent waves and avoid low-frequency reflections with proper parameter values. We analyse the different roles of the double-pole CFS-PML parameters and propose optimal selections of these parameters. Numerical tests show that the double-pole CFS-PML with the optimal parameters can generate satisfactory results for broad-band seismic wave simulations.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉Density variations drive mass transport in the Earth from plate tectonics to convection in the mantle and core. Nevertheless, density remains poorly known because most geophysical measurements used to probe the Earth's interior either have little sensitivity to density, suffer from trade-offs or from non-uniqueness. With the ongoing expansion of computational power, it has become possible to accurately model complete seismic wavefields in a 3-D heterogeneous Earth, and to develop waveform inversion techniques that account for complicated wavefield effects. This may help to improve resolution of density. Here, we present a pilot study where we explore the extent to which waveform inversion may be used to better recover density as a separate, independent parameter. We perform numerical simulations in 2-D to investigate under which conditions, and to what extent density anomalies may be recovered in the Earth's mantle. We conclude that density can indeed be constrained by seismic waveforms, mainly as a result of scattering effects at density contrasts. As a consequence, the low-frequency part of the wavefield is the most important for constraining the actual extent of anomalies. While the impact of density heterogeneities on the wavefield is small compared to the effects of velocity variations, it is likely to be detectable in modern regional- to global-scale measurements. We also conclude that the use of gravity data as additional information does not help to further improve the recovery of density anomalies unless strong 〈span style="font-style:italic;"〉a priori〈/span〉 constraints on the geometry of density variations are applied. This is a result of the inherent physical non-uniqueness of potential-field inverse problems. Finally, in the limited numerical setup that we employ, we find that the initially supplied anomalies in 〈span style="font-style:italic;"〉S〈/span〉- and 〈span style="font-style:italic;"〉P〈/span〉-velocity models are of minor importance.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉The accuracy of seismic numerical simulations and the effectiveness of imaging conditions are important in reverse time migration studies. Using the pseudospectral method, the precision of the calculated spatial derivative of the seismic wavefield can be improved, increasing the vertical resolution of images. Low-frequency background noise, generated by the zero-lag cross-correlation of mismatched forward-propagated and backward-propagated wavefields at the impedance interfaces, can be eliminated effectively by using the imaging condition based on the wavefield decomposition technique. The computation complexity can be reduced when imaging is performed in the frequency domain. Since the Fourier transformation in the 〈span style="font-style:italic;"〉z〈/span〉-axis may be derived directly as one of the intermediate results of the spatial derivative calculation, the computation load of the wavefield decomposition can be reduced, improving the computation efficiency of imaging. Comparison of the results for a pulse response in a constant-velocity medium indicates that, compared with the finite difference method, the peak frequency of the Ricker wavelet can be increased by 10–15 Hz for avoiding spatial numerical dispersion, when the second-order spatial derivative of the seismic wavefield is obtained using the pseudospectral method. The results for the SEG/EAGE and Sigsbee2b models show that the signal-to-noise ratio of the profile and the imaging quality of the boundaries of the salt dome migrated using the pseudospectral method are better than those obtained using the finite difference method.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-04-19
    Description: 〈span class="paragraphSection"〉〈div class="boxTitle"〉Abstract〈/div〉We present an algorithm for efficient 3-D inversion of marine controlled-source electromagnetic data. The efficiency is achieved by exploiting the redundancy in data. The data redundancy is reduced by compressing the data through stacking of the response of transmitters which are in close proximity. This stacking is equivalent to synthesizing the data as if the multiple transmitters are simultaneously active. The redundancy in data, arising due to close transmitter spacing, has been studied through singular value analysis of the Jacobian formed in 1-D inversion. This study reveals that the transmitter spacing of 100 m, typically used in marine data acquisition, does result in redundancy in the data. In the proposed algorithm, the data are compressed through stacking which leads to both computational advantage and reduction in noise. The performance of the algorithm for noisy data is demonstrated through the studies on two types of noise, viz., uncorrelated additive noise and correlated non-additive noise. It is observed that in case of uncorrelated additive noise, up to a moderately high (10 percent) noise level the algorithm addresses the noise as effectively as the traditional full data inversion. However, when the noise level in the data is high (20 percent), the algorithm outperforms the traditional full data inversion in terms of data misfit. Similar results are obtained in case of correlated non-additive noise and the algorithm performs better if the level of noise is high. The inversion results of a real field data set are also presented to demonstrate the robustness of the algorithm. The significant computational advantage in all cases presented makes this algorithm a better choice.〈/span〉
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...