ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-10-05
    Description: Abstract
    Description: These are maps of artificial night sky radiance that were produced by the Light Pollution Science and Technology Institute (ISTIL), and described in the paper "The New World Atlas of Artificial Night Sky Brightness" (Falchi et al. 2016).The data are stored in a 2.9 Gb geotiff file, on a 30 arcsecond grid. The map reports simulated zenith radiance data in [mcd/m^2]. The map is based on data from the VIIRS Day Night Band (DNB, MIller et al. 2013), which has been propagated through the atmosphere using the radiative transfer code reported in (Cinzano and Falchi, 2012). The upward emission function and the radiance calibration were obtained using data from Sky Quality Meters (including data from Duriscoe et al. 2007; Falchi 2010; Kyba et al 2013, 2015 and Zamorano et al. 2016).Note that the maps report artificial light only! The zenith radiance from natural sources such as stars and the Milky Way are not included, and must be added in order to match the data that would be obtained from an actual outdoor measurement.A kmz file for quick view of the data is also provided. Access to the FTP site to download the data can be requested via the data request form on the landing page.Version History:13 November 2019: change of the licence to CC BY NC 4.0 (after end of embargo period).
    Description: Other
    Description: Artificial lights raise the night sky luminance, creating the most visible effect of light pollution, artificial sky glow. Despite the increasing interest among scientists in fields such as ecology, astronomy, healthcare, land use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, here we present the World atlas of the artificial sky luminance, computed with our light pollution propagation software using new high resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the World and more than 99% of the U.S.A. and Europe populations live under light polluted skies. The Milky Way is hidden for more than one third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of World's lands between 75°N and 60°S, 88% of Europe and almost half of U.S.A. experience light polluted nights.
    Keywords: artificial light ; ALAN ; skyglow ; light pollution ; atlas ; night ; radiative transfer ; Suomi NPP ; Sky Quality Meter ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 VISUALIZATION/IMAGE PROCESSING
    Language: English
    Type: Dataset , Dataset
    Format: 26001739 Bytes
    Format: 1 Files
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-17
    Description: Abstract
    Description: The data set provides GFZ VER11 orbits of altimetry satellitesERS-1 (August 1, 1991 - July 5, 1996),ERS-2 (May 13, 1995 - February 27, 2006),Envisat (April 12, 2002 - April 8, 2012),Jason-1 (January 13, 2002 - July 5, 2013) andJason-2 (July 5, 2008 - April 5, 2015)TOPEX/Poseidon (September 23, 1992 - October 8, 2005),derived at the time spans given at Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences within the Sea Level phase 2 project of the European Space Agency (ESA) Climate Change Initiative using "Earth Parameter and Orbit System - Orbit Computation (EPOS-OC)" software and the Altimeter Database and processing System (ADS, http://adsc.gfz-potsdam.de/ads/) developed at GFZ. The orbits were computed in the same (ITRF2008) terrestrial reference frame for all satellites using common, most precise models and standards available and described below.The ERS-1 orbit is computed using satellite laser ranging (SLR) and altimeter crossover data, while the ERS-2 orbit is derived using additionally Precise Range And Range-rate Equipment (PRARE) measurements. The Envisat, TOPEX/Poseidon, Jason-1 and Jason-2 orbits are based on Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and SLR observations.The orbit files are available in the Extended Standard Product 3 Orbit Format (SP3-c, ftp://igscb.jpl.nasa.gov/igscb/data/format/sp3c.txt) Files are gzip-compressed. File names are given as sate_YYYYMMDD_SP3C.gz, where "sate" is the abbreviation (ENVI, ERS1, ERS2, JAS1, JAS2, TOPX) of the satellite name, YYYY stands for 4-digit year, MM stands for month and DD stands for day of the beginning of the file.More details on these orbits are provided in Rudenko et al. (2017)
    Keywords: Jason-1 ; Jason-2 ; ERS-1 ; ERS-2 ; Envisat ; ESA CCI Sea Level ; Altimetry satellite ; Low Earth Orbit satellites ; sea level ; TOPEX/POSEIDON ; ITRF2008 ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Altimeters 〉 Radar Altimeters ; equipment 〉 artificial satellite 〉 observation satellite ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 SATELLITE ORBITS/REVOLUTION 〉 ORBITAL POSITION ; EARTH SCIENCE 〉 OCEANS 〉 SEA SURFACE TOPOGRAPHY 〉 SEA SURFACE HEIGHT
    Language: English
    Type: Dataset
    Format: 6 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-11
    Description: Abstract
    Description: This data collection contains a multitemporal series of six airborne hyperspectral image mosaics acquired during the growing season of 2012 over the Neusling test area near Landau a.d. Isar in Southern Germany. The airborne hyperspectral data is complemented by accompanying in-situ data acquired parallel to the overflights. The dataset is composed of a) four airborne hyperspectral image mosaics acquired during overflights on April 28th 2012, May 25th 2012, June 16th 2012 and September 8th 2012 with the AVIS-3 imaging spectrometer. The AVIS data consists of 197 spectral bands, ranging from VIS to SWIR (477 - 1704 nm); b) two airborne hyperspectral image mosaics acquired during overflights, which were conducted by the DLR user service OpAiRS (www.dlr.de/opairs) on May 8th 2012 and August 14th 2012 with a HySpex imaging spectrometer. The HySpex data consists of 332 spectral bands, ranging from VIS to SWIR (417 - 2496 nm); c) spatially comprehensive land use/land cover maps generated from in-situ observations for two time-windows during the growing season of 2012 (May and August); d) Flight-parallel in-situ point-measurements consisting of: i) non-destructively measured leaf area index of winter wheat, winter barley, sugar beet, maize and rapeseed (561 measurements incl. standard deviations), ii) SPAD chlorophyll measurements (522 measurements incl. standard deviations), iii) 557 soil moisture measurements incl. standard deviations iv) 539 phenological observations v) 499 measurements of canopy height incl. standard deviations and vi) 38 measurements of plant density. The dataset was collected in order to cover the seasonal dynamics in the development of agricultural crops in Southern Germany.Version History: Correct Acquisition date of the second HySpex flight was August 14th 2012, not August 12th 2012.
    Description: Other
    Description: The Environmental Mapping and Analysis Program (EnMAP) is a German hyperspectral satellite mission that aims at monitoring and characterizing the Earth’s environment on a global scale. EnMAP serves to measure and model key dynamic processes of the Earth’s ecosystems by extracting geochemical, biochemical and biophysical parameters, which provide information on the status and evolution of various terrestrial and aquatic ecosystems. In the frame of the EnMAP preparatory phase, pre-flight campaigns including airborne and in-situ measurements in different environments and for several application fields are being conducted. The main purpose of these campaigns is to support the development of scientific applications for EnMAP. In addition, the acquired data are input in the EnMAP end-to-end simulation tool (EeteS) and are employed to test data pre-processing and calibration-validation methods. The campaign data are made freely available to the scientific community under a Creative Commons Attribution-ShareAlike 4.0 International License. An overview of all available data is provided in in the EnMAP Flight Campaigns Metadata Portal http://www.enmap.org/?q=flights.
    Keywords: Hyperspectral Imagery ; Field Spectroscopy ; Agriculture ; LAI
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-08
    Description: Abstract
    Description: The stress map of Germany shows the orientation of the current maximum horizontal stress (SHmax) in the earth's crust. Assuming that the vertical stress (SV) is a principal stress, SHmax defines the orientation of the 3D stress tensor; the minimum horizontal stress Shmin is than perpendicular to SHmax. In the stress map the SHmax orientations are represented as lines of different lengths. The length of the line is a measure of the quality of data and the symbol shows the stress indicator and the color the stress regime. Data with E-Quality are shown without additional information as dots on the map. The stress data are freely available and part of the World Stress Map (WSM) project. For more information about the data and criteria of data analysis and quality mapping are plotted along the WSM website at http://www.world-stress-map.org.The German version of the World Stress Map Germany is available via http://doi.org/10.5880/WSM.Germany2016.
    Description: Other
    Description: The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale.
    Keywords: crustal stress ; in situ stress ; tectonic stress ; crustal stress pattern ; World Stress Map
    Type: Dataset
    Format: 9901520 Bytes
    Format: 1 Files
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-08
    Description: Abstract
    Description: The stress map of Iceland shows the orientation of the current maximum horizontal stress (SHmax) in the earth's crust. Assuming that the vertical stress (SV) is a principal stress, SHmax defines the orientation of the 3D stress tensor; the minimum horizontal stress Shmin is than perpendicular to SHmax. In the stress map the SHmax orientations are represented as lines of different lengths. The length of the line is a measure of the quality of data and the symbol shows the stress indicator and the color the stress regime. Data with E-Quality are shown without additional information as dots on the map. The stress data are freely available and part of the World Stress Map (WSM) project. For more information about the data and criteria of data analysis and quality mapping are plotted along the WSM website at http://www.world-stress-map.org.
    Description: Other
    Description: The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale.
    Keywords: crustal stress ; in situ stress ; tectonic stress ; crustal stress pattern ; mid ocean ridge
    Language: English
    Type: Dataset , Dataset
    Format: 11932019 Bytes
    Format: 1 Files
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-08
    Description: Abstract
    Description: The Stress Map of the Mediterranean and Central Europe 2016 displays 5011 A-C quality stress data records of the upper 40 km of the Earth’s crust from the WSM database release 2016 (Heidbach et al, 2016, http://doi.org/10.5880/WSM.2016.001). Focal mechanism solutions determined as being potentially unreliable (labelled as Possible Plate Boundary Events in the database) are not displayed. Further detailed information on the WSM quality ranking scheme, guidelines for the various stress indicators, and software for stress map generation and the stress pattern analysis is available at www.world-stress-map.org.
    Description: Other
    Description: The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale.
    Keywords: crustal stress ; in situ stress ; tectonic stress ; crustal stress pattern ; tectonics ; geophysics ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION 〉 PLATE MOTION DIRECTION ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 DATA SEARCH AND RETRIEVAL
    Type: Dataset
    Format: 13765676 Bytes
    Format: 1 Files
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-12-02
    Description: Abstract
    Description: This data pubilcation includes EnMAP-like imaging spectroscopy data files to be used for mineral mapping with the EnMAP BOX software. It is simulated EnMAP satellite data, which is based on hyperspectral flight campaign data with the AVIRIS-NG and HyMap sensors. In preparation of the EnMAP satellite mission, an EnMAP BOX software package provides tools for visualization and scientific analysis of the data. Among many applications, the EnMAP BOX contains geological mapping tools (EnGeoMAP). Here we apply these tools to several representative test cases (Boesche, 2015; Boesche et al. 2016; Mielke et al., 2016). The test data comprise two study sites. The first scene covers the Mountain Pass open pit mine - a carbonatite deposit in California, USA. It contains calcitic rock units and rare earth element (REE) bearing minerals of the bastnaesite group, also called fluorocarbonates (Olson et al., 1954). The REE concentrations at mountain pass are 9.2% on average, among the highest in the world (Brüning and Böhmer, 2011). The high concentration and the open pit activities make Mountain Pass an ideal test site to investigate the rare earth element distribution in the surface layer. The airborne image data were collected in 2014 by Jet Propulsion Laboratory (JPL), USA, with the AVIRIS-NG sensor and form the basis for EnMAP simulations (Segl et al., 2012; Thompson et al., 2015). The second HyMap spectral image data covers part of the Miocene Cabo de Gata Nίjar volcanic field, in southeast Spain. It comprises a subset of (Chabrillat et al., 2016) covering the Rodalquilar and Lomilla Calderas, which host the economically relevant gold-silver, lead-zinc-silver-gold and alunite deposits. It is a hydrothermal alteration complex, representing the silicic alteration, the advanced argillic alteration zone, which grades into the argillic and propylitic zone (Arribas et al., 1995, 1989). The image data are part of the Cabo de Gata Nίjar HyMap imagery which was collected during the DLR HyEurope airborne campaign 2005 in the frame of the GFZ land degradation program (Chabrillat et al., 2016, 2005). We use these datasets to simulate EnMAP-like images for classification and mapping using spectroscopic remote sensing techniques in the EnGeoMAP tools. The EnMAP end-to-end Simulation (EeteS) tool produced simulated EnMAP like data with a spatial sampling distance of 30 x 30 m and 242 spectral bands (Guanter et al., 2015; Segl et al., 2012). File format for both sites: Band Sequential Image Files (*.bsq) and file header (*.hdr). The full description of the datasets is given in the associated data report by Boesche et al. (2016).
    Description: Other
    Description: The Environmental Mapping and Analysis Program (EnMAP) is a German hyperspectral satellite mission that aims at monitoring and characterizing the Earth’s environment on a global scale. EnMAP serves to measure and model key dynamic processes of the Earth’s ecosystems by extracting geochemical, biochemical and biophysical parameters, which provide information on the status and evolution of various terrestrial and aquatic ecosystems. In the frame of the EnMAP preparatory phase, pre-flight campaigns including airborne and in-situ measurements in different environments and for several application fields are being conducted. The main purpose of these campaigns is to support the development of scientific applications for EnMAP. In addition, the acquired data are input in the EnMAP end-to-end simulation tool (EeteS) and are employed to test data pre-processing and calibration-validation methods. The campaign data are made freely available to the scientific community under a Creative Commons Attribution-ShareAlike 4.0 International License. An overview of all available data is provided in in the EnMAP Flight Campaigns Metadata Portal http://www.enmap.org/?q=flights.
    Keywords: Imaging spectroscopy ; Mineral Mapping ; Rare Earth Elements ; EnMAP ; EnGeoMAP ; Simulated Data ; Rodalquilar ; Mountain Pass ; Hyperspectral Imagery ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS 〉 MINERAL PHYSICAL/OPTICAL PROPERTIES 〉 REFLECTION ; mineral resource ; satellite image
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-12-06
    Description: Abstract
    Description: The SLO-VRP2016/Koper quasi-geoid model is the latest height reference surface for Slovenia, referred to the GRS80 ellipsoid. The acronym means SLOvenska Višinska Referenčna Ploskev iz leta 2016, datum Koper (translated in English, Slovenian Height Reference Surface from the year 2016, datum Koper). It was computed by the Surveying and Mapping Authority of the Republic of Slovenia, in cooperation with the Norwegian Mapping Authority (Kartverket). The model is based on a set of old terrestrial gravity data (origin from Yugoslavia, from 1956-75), a set of new Slovenian gravity data (along levelling lines and regional gravimetric survey, from 2000 to 2015) and sets from neighboring countries (Italy, Austria, Hungary and Croatia), altogether 16.400 points in the mean-tide system. Stokes/Molodensky equations and the Fast Fourier transform technique have been applied with use of global geopotential model EGM2008. The computed quasi-geoid surface was adapted (fitted) to 66 high quality GNSS/levelling points, which were fairly distributed throughout the territory of Slovenia. Therefore, the resulting quasi geoid model can be used to perform the conversion between ellipsoidal heights (Slovenian realization of ETRS89 - D96, GRS80 ellipsoid) and normal heights (Slovenian Height System 2010 - SVS2010 with Koper tide gauge). The SLO_VRP2016/Koper model is given in the form of a regular grid, with resolution of 30” × 45”, within the limits of 13° 〈 λ 〈 17° (east of Greenwich) and 45° 〈 φ 〈 47° (north of the equator). In this area geoid heights range between 42.157 m and 50.608 m, with an average of 46.162 m. The inner accuracy of the calculated geoid heights is 2.6 cm, the outer accuracy (based on 871 control GNSS/levelling measurements along levelling lines) is up to 10 cm. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; Slovenia ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-03
    Description: Abstract
    Description: GFZRNX is a software toolbox for Global Navigation Satellite System (GNSS) data provided in the REceiver Independent EXchange format (RINEX) of the major versions 2 and 3. The following RINEX data types are supported: - Observation data - Navigation data - Meteorological dataThe following global and regional satellite systems are supported:GPS - Global Positioning System (USA) GLONASS - GLObal NAvigation Satellite System (RUS)BEIDOU - Chinese Global and Regional Navigation Satellite System (CHN)GALILEO - European Global Navigation Satellite SystemIRNSS - Indian Regional Naviagation Satellite System (IND)QZSS - Quasi Zenith Satellite System (JAP) The following operations/tasks are supported: - RINEX data check and repair - RINEX data format conversion ( version 3 to 2 and vice versa ) - RINEX data splice - RINEX data split - RINEX data statistics generation - RINEX data manipulations like: (1) data sampling, (2) observation types selection, (3) satellite systems selection, (4) elimination of overall empty or sparse observation types - Automatic version dependent file naming on output data - RINEX data header editing - RINEX data meta data extraction - RINEX data comparisonThe following operating systems are supported: - Microsoft Windows (64) - Microsoft Windows (32) - Apple macOS - ORACLE Solaris (SPARC) - ORACLE Solaris (i86) - Linux (64) - Linux (32) Please find the executables and the Documentation via: http://semisys.gfz-potsdam.de/semisys/scripts/download/index.php (GFZ Software -〉 gfzrnx)
    Keywords: RINEX ; GNSS ; GPS ; GLONASS ; GALILEO ; BEIDOU ; QZSS ; IRNSS
    Type: Software
    Format: 674121 Bytes
    Format: 3 Files
    Format: application/octet-stream
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-03
    Description: Abstract
    Description: HUST-Grace2016 is a new time series of monthly gravity field models up to degree and order 60. The new HUST-Grace2016s is a new GRACE-only static gravity field model up to degree and order 160. Using about 13 years of GRACE Level 1B data spanning from January 2003 to April 2015. This new model has been developed by the institute of geophysics in the Huazhong University of Science and Technology (HUST). No constraint was applied. More details about our HUST-Grace2016s will be given in our paper “HUST-Grace2016s: a new GRACE static gravity field model derived from a modified dynamic approach over a 13-year observation period” (submitted to JGR Solid Earth in November 2016).This work is supported by the National Natural Science Foundation of China (No. 41131067, 41374023, 41474019), the Project funded by China Postdoctoral Science Foundation (No. 2016M592337).
    Description: Other
    Description: Input Data:- GRACE RL02 L1B (JPL) data products: January 2003 – March 2016- ITSG kinematic orbits: January 2003 – April 2015- AOD1B RL05 (GFZ) idealizing productCalculation method:- modified dynamic approach- numerical integrator: 14th-order Gauss-Jackson integrator- arc length: 24 hours- arc step: 5 secondsForce models:- Earth’s static gravity field: GGM05s up to degree and order 180- Ocean tides: EOT11a, truncated up to degree and order 120- N-body Perturbation: Direct and indirect J2 effects with JPL DE421- Solid earth tides: frequency independent/dependent terms, permanent tide- Solid earth tides: frequency independent/dependent terms, permanent tide- Pole tides: solid earth pole tides from IERS 2010, and ocean pole tides from Desai- Atmosphere and Oceanic variability: The AOD1B RL05 model up to degree 100- General Relativistic effects: IERS 2010
    Keywords: monthly gravity field model ; ICGEM ; geodesy
    Language: English
    Type: Dataset , Dataset
    Format: 1 Files
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-05-23
    Description: Abstract
    Description: The GEOIDE-Ar16 Argentinian gravimetric geoid model covers the area from 57° S to 20° S in latitude and from 76° W to 52° W in longitude, with a grid resolution of 1' × 1'. It was developed using the remove-compute-restore technique and incorporating the GOCO05S satellite-only global geopotential model up to degree and order 280, together with about 650,000 land and marine gravity measurements. Terrain corrections were calculated for all gravity observations using a combination of the SRTM_v4.1 and SRTM30_Plus_v10 digital elevation models. For the regions that lacked of gravity observations, the DTU13 gravity model was utilised. The residual gravity anomalies were gridded using the tensioned spline algorithm. The resultant gravity anomaly grid was applied in the Stokes' integral using the spherical multi-band FFT approach and the deterministic kernel modification proposed by Wong and Gore. The accuracy of GEOIDE-Ar16 was assessed by comparing it with GPS-levelling derived geoid undulations at 1,904 locations and the EGM2008 model. Results show that the GEOIDE-Ar16 geoid model has an accuracy of less than 10 centimetres. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Spherical multi-band Fast Fourier Transform ; Wong-Gore Stokes kernel modification ; Argentina ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-06-05
    Description: Abstract
    Description: This data publication comprises (1) a one-year data set of ground-based GPS raw signal observations (inphase and quadphase C/A code correlation sums, NCO phases, pseudoranges) aiming at geometric elevation angles below +2°, (2) the "OpenGPS" receiver software and (3) MATLAB source code to access the raw data files. (1) ground-based GPS raw signal observations: Within the "GLESER" measurement campaign 2581 validated setting events were recorded by the "OpenGPS" open-loop tracking receiver at an observation site located at 52.3808°N, 13.0642°E (Potsdam, Germany) between January and December 2014. The instrument provided on average 8.3 observations per day with three data gaps (29 January to 1 February, 29–31 August and 18–22 December 2014) caused by hardware or software problems, operator errors or other technical reasons. Between 15 July and 6 September the "OpenGPS" receiver malfunctioned due to an operator error and 437 observations from that time period are removed from the data set leaving 2581 low-elevation events.Raw data files are stored in compressed tar archives each covering one week of observations. For more information see document "readme-gleser-dataset.pdf".(2) "OpenGPS" receiver software: The compressed tar archive "gleser-OpenGPS-src.tar.gz" includes (C code) sources of the OpenGPS receiver hardware. The receiver software is designed for "OpenSourceGPS"-compatible hardware (Kelley, 2002) and Linux operating system. During the 2014 campaign kernel version 2.6.32 (OpenSUSE version 11.3) with real-time extension module RTAI (RealTime Application Interface for Linux) version 3.8.1 was used. For more information see the document "readme-gleser-OpenGPS.pdf". (3) MATLAB source code: The compressed tar archive "gleser-readdata-src.tar.gz" contains a MATLAB function file that may be used to access the raw data files. For more information see the document "readme-gleser-readdata.pdf".
    Keywords: global navigation satellite system (GNSS) ; global positioning system (GPS) ; open-loop signal tracking ; atmospheric refractivity ; ground-based obervation
    Type: Dataset
    Format: 611206 Bytes
    Format: 6 Files
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/gzip
    Format: application/gzip
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-10-04
    Description: Abstract
    Description: GOCO05c is a static global combined gravity field model up to d/o 720. It has been elaborated by the GOCO Group (TU Munich, Bonn University, TU Graz, Austrian Academy of Sciences, University Bern). GOCO05c is a combination model based on the satellite-only gravity field model GOCO05s and several gravity anomaly datasets, constituting a global 15'x15' data grid. The combination is carried out in term of full normal equation systems.Contributing Institutions are: (1) TU Muenchen, DE, Institute of Astronomical and Physical Geodesy; (2) University of Bonn, DE, Institute of Geodesy and Geoinformation; (3) TU Graz, AU, Institute of Theoretical and Satellite Geodesy; (4) Austrian Academy of Sciences, Space Research Institute, and (5) University of Bern, CH, Astronomical Institute
    Description: Other
    Description: Global 15’x15’ data grid: Region (Source): Number of data cellsArctic (ArcGP Group): 44522Australia (Curtin University):11170Canada (NRCan):19259Europe (IfE Hanover):15625Oceans (DTU Space): 691818South America (NGA): 24818USA (NGA): 12895For the remaining land areas (Central America, Asia, Africa, Antarctica) fill-in datasets were used: Data (Source): Number of data cells NIMA96 (DMA/GSFC): 110594GOCO05s (GOCO Group): 106099 (band-limited gravity anomalies)RWI_TOIS2012 (KIT): 117737 (topographic anomalies)GOCO05c should not be used for geophysical applications in fill-in regions, because its high frequency part in fill-in regions resulted from simple synthetic numeric forward modelling of topographic information.
    Keywords: ICGEM ; global gravitational model ; GOCO ; Geodesy ; GOCE
    Language: English
    Type: Dataset , Dataset
    Format: 14167050 Bytes
    Format: 4 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-10-04
    Description: Abstract
    Description: GGM05C is an unconstrained global gravity model complete to degree and order 360 determined from 1) GRACE K-band intersatellite range-rate data, GPS tracking and GRACE accelerometer data, 2) GOCE gradiometer data (ZZ+YY+XX+XZ) spanning the entire mission using a band pass filter of 10-50 mHz and polar gap filled with synthetic gradients from GGM05S to degree/order 150 evaluated at 200-km altitude, and 3) terrestrial gravity anomalies from DTU13 (Andersen et al., 2014). The value for C20 has been replaced with a value derived from satellite laser ranging. No rate terms were modeled. For additional details on the background modeling, see the CSR RL05 processing standards document available at ftp://podaac.jpl.nasa.gov/allData/grace/docs/L2-CSR0005_ProcStd_v4.0.pdf (Bettadpur 2012). Detailed information about GGM05C is available at ftp://ftp.csr.utexas.edu/pub/grace/GGM05/README_GGM05C.pdf (Ries et al., 2016).
    Keywords: ICGEM ; global gravitational model ; GRACE ; GOCE
    Language: English
    Type: Dataset , Dataset
    Format: 1734765 Bytes
    Format: 3 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-10-04
    Description: Abstract
    Description: EIGEN-6S4 (Version 2) is a satellite-only global gravity field model from the combination of LAGEOS, GRACE and GOCE data. All spherical harmonic coefficients up to degree/order 80 are time variable. Their time variable parameters consist of drifts as well as annual and semi-annual variations per year. The time series of the time variable spherical harmonic coefficients are based on the LAGEOS-1/2 solution (1985 to 2003) and the GRACE-LAGEOS monthly gravity fields RL03-v2 (August 2002 to July 2014) from GRGS/Toulouse (Bruinsma et al. 2009).The herein included GRACE/LAGEOS data were combined with all GOCE data which have been processed via the direct numerical approach (Pail et al. 2011). The polar gap instabilty has been overcome using the Sperical Cap Regularization (Metzler and Pail 2005). That means this model is a combination of LAGEOS/GACE with GO_CONS_GCF_2_DIR_R5 (Bruinsma et al. 2013).Version History: This data set is an updated version of Foerste et al. (2016, http://doi.org/10.5880/icgem.2016.004) Compared to the first version, EIGEN-6S4v2 contains an improved modelling of the time variable part, in particular for C20.
    Keywords: ICGEM ; Global Gravitational Model ; GRACE ; GOCE ; LAGEOS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD
    Type: Dataset
    Format: 8651697 Bytes
    Format: 3 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-10-19
    Description: Abstract
    Description: Die Spannungskarte Deutschland zeigt die Orientierung der gegenwärtigen maximalen horizontalen Spannung (SHmax) in der Erdkruste. Unter der Annahme, dass die vertikale Spannung (SV) eine Hauptspannung ist, legt SHmax die Orientierung des 3D Spannungstensors festgelegt; die minimale horizontale Spannung Shmin ist entsprechend senkrecht zu SHmax. In der Spannungskarte sind die SHmax Orientierungen als Linien unterschiedlicher Länge dargestellt. Die Länge der Linie ist dabei ein Maß für die Datenqualität und das Symbol zeigt die Methode und die Farbe das Spannungsregime an. Daten mit E-Qualität sind ohne weitere Information als Punkte in der Karte dargestellt. Die Spannungsdaten sind frei zugänglich und Bestandteil des World Stress Map (WSM) Projektes. Weitere Informationen zu den Daten und Kriterien der Datenanalyse und Qualitätszuordnung befinden sich auf der WSM Internetseite unter http://www.world-stress-map.org. The English version of the World Stress Map Germany is available via http://doi.org/10.5880/WSM.Germany2016_en.
    Keywords: crustal stress ; in situ stress ; tectonic stress ; crustal stress pattern ; World Stress Map
    Type: Dataset
    Format: 9902687 Bytes
    Format: 1 Files
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-02-23
    Description: Abstract
    Description: A temporary seismic network was installed in Sri Lanka for a time period of 13 months. The stations were equipped with Earth Data EDR-210 digital recorders and Trillium 120 PA, Güralp C3E and Güralp CMG-3ESP broadband sensors. Main aim of the network is to shed light on the crustal and upper mantle structure beneath the island. Also local seismic activity is studied.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-02-23
    Description: Abstract
    Description: A temporary installation has been realized in the Netherlands, in the region of the Groningen gas field. The objective of this installation is to test the usage of a conventional array layout for detection of microseismicity. The region of the Groningen gas field is an excellent test ground, since the operating company NAM (Nederlandse Aardolie Maatschappij) installed a multitude of shallow borehole stations from 2014 to 2017, of which 65 – in addition to the already existing shallow borehole stations installed by KNMI (Koninklijk Nederlands Meteorologisch Instituut) – were already online during the time of measurement, thus ensuring an earthquake catalogue that is complete down to low magnitudes during the time of array installation. The site for the installation was decided together with local parties involved in the seismicity monitoring, i.e. KNMI and NAM, and was located close to the village of Wittewierum. Stations were installed from the 12th of July 2016 to the 29th of August 2016 (49 days). The array was composed of 9 stations. The array was constructed in three concentric rings of 75 m, 150 m and 225 m diameter including a central station, but the geometry had to be adapted to the local conditions. Each station consisted of a broadband sensor (Trillium 120 s), an acquisition system (CUBE datalogger), a battery, and a GPS antenna. The entire system was installed at ~1 m depth (apart from GPS and transmission antennas), requiring only the digging of shallow holes, one for the installation of a thin concrete plate and the sensor, another one for a box containing the remaining instrumentation. The array stations recorded continuously with little outages; only station WAR1 stopped recording on the 22nd of August and station WAR7 stopped recording from 20th to 22nd of August. Waveform data is available from the GEOFON data centre, under network code 1C, and is fully open.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~30G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The network consistes in 6 stations surronding the fumarole field at Lastarria volcano. These stations were operative during one month with the final purpose of detect changes in the hydrothermal system triggered by passing of seismic waves produced by artificial explosions. Waveform data are available from the GEOFON data centre, under network code 2G, and are embargoed until 001 2019.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: approx. 9 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The experiments are performed down the Edward Bailey valley, in the Renland peninsula, Scoresby Sund, Greenland. General purpose: ambient seismic noise recordings are obtained to characterize the geometry/structure of the valley the geometry/structure of the glaciers the microseismicity of the glacier, the friction process, crack orientation and mechanisms the seismic activity of glacial rivers, the relation between hydrological flow and noise spectrum the localization and characterization of sub-glacial flow from surface recordings. Seismic stations were composed of 3C broadband Trillium compact seismometer, a Cube datalogger and a 12V (D-cell types, stacked) battery pack.The experiment splits into three surveys performed at three different sites, one after the other, from july to august 2016. In the first experiment, we deploy 11 stations, 9 of them on a flat sandy area covering, partly, immobile ice that seems to be blocked between the Bailey Glacier (upstream) and the Apusinikajik glacier (downstream). The 9 sensors are placed a few hundreds of meters from the Apusinikajik lateral front, the last 2 are placed on the glacier next to the collapsing front. In the second and third experiment (chronologically speaking), we deploy 10 and 8 stations, respectively. Each deployment is performed along a Bailey valley transect. The first one intercepts the front-end of the glacier and the sub-glacial river exit (flow of several m3/s). The second transect is performed some 850m upstream. Waveform data are available from the GEOFON data centre, under network code 3H, and are embargoed until summer of 2019.
    Keywords: Seismic waveforms ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approximately 30 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The Halmahera island belongs to the North Moluccas province (Maluku Utara), Indonesia. This K-shaped island is located in the eastern part of the Moluccas Sea, the only active arc-arc collision complex on the Earth. The western arm of the K forms a volcanic arc due to the former subduction of the Moluccas Sea plate underneath Halmahera. The region is characterized by intense seismic activity at crustal, intermediate depth, and along the subducting plate. At crustal level the Halmahera seismicity along the two eastern arms of the K show strike-slip faulting style. In November 2015 a localized intense and energetic seismic activity started around Jailolo volcano in the West Halmahera Regency. The seismic sequence intermittently lasted until February 2016 and hundreds of events were felt by the population and several buildings were destroyed and damaged by the shaking. The largest shocks of the sequence have been located by global agencies (GEOFON and GCMT) showing normal faulting style. The temporal evolution of the seismicity seems to be more swarm-like type activity instead of mainshock-aftershock sequence. In spring 2016 a research project has been funded by the German's Humanitarian Aid program in collaboration with BMKG, Indonesia, with the goal of understanding the origin of the intense seismic activity and the related hazard. In summer 2016 we instrumented the area with a dense seismic network composed of 29 short period and 6 broad-band seismometers. The instruments deployment aims at characterizing the seismicity of the Jailolo region in relationship with the 2015-2016 seismic activity. The network will help to understand the seismo-tectonic of the area and the relation between seismicity and the volcanic activity at Jailolo volcano and possible link with the 2015-2016 swarm. Should the seismic activity intensify as in November 2015, we can record it and narrow down the underlying physical mechanisms. Waveform data are available from the GEOFON data centre, under network code 7G, and are embargoed until the end of 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: approx. 900GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...