ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society
  • 2010-2014  (2,273)
  • 1995-1999  (1,569)
  • 1965-1969
  • 2013  (2,273)
  • 1999  (1,569)
Collection
Years
  • 2010-2014  (2,273)
  • 1995-1999  (1,569)
  • 1965-1969
Year
  • 1
    Publication Date: 2013-12-02
    Description: The effects of stratospheric cooling and sea surface warming on tropical cyclone (TC) potential intensity (PI) are explored using an axisymmetric cloud-resolving model run to radiative–convective equilibrium (RCE). Almost all observationally constrained datasets show that the tropical lower stratosphere has cooled over the past few decades. Such cooling may affect PI by modifying the storm's outflow temperature, which together with the sea surface temperature (SST) determines the thermal efficiency in PI theory. Results show that cooling near and above the model tropopause (∼90 hPa), with fixed SST, increases the PI at a rate of 1 m s−1 per degree of cooling. Most of this trend comes from a large increase in the thermal efficiency component of PI as the stratosphere cools. Sea surface warming (with fixed stratospheric temperature) increases the PI by roughly twice as much per degree, at a rate of about 2 m s−1 K−1. Under increasing SST, most of the PI trend comes from large changes in the air–sea thermodynamic disequilibrium. The predicted outflow temperature shows no trend in response to SST increase; however, the outflow height increases substantially. Under stratospheric cooling, the outflow temperature decreases and at the same rate as the imposed cooling. These results have considerable implications for global PI trends in response to climate change. Tropical oceans have warmed by about 0.15 K decade−1 since the 1970s, but the stratosphere has cooled anywhere from 0.3 to over 1 K decade−1, depending on the dataset. Therefore, global PI trends in recent decades appear to have been driven more by stratospheric cooling than by surface warming.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2013-12-02
    Description: The historical global “best track” records of tropical cyclones extend back to the mid-nineteenth century in some regions, but formal analysis of these records is encumbered by temporal heterogeneities in the data. This is particularly problematic when attempting to detect trends in tropical cyclone metrics that may be attributable to climate change. Here the authors apply a state-of-the-art automated algorithm to a globally homogenized satellite data record to create a more temporally consistent record of tropical cyclone intensity within the period 1982–2009, and utilize this record to investigate the robustness of trends found in the best-track data. In particular, the lifetime maximum intensity (LMI) achieved by each reported storm is calculated and the frequency distribution of LMI is tested for changes over this period. To address the unique issues in regions around the Indian Ocean, which result from a discontinuity introduced into the satellite data in 1998, a direct homogenization procedure is applied in which post-1998 data are degraded to pre-1998 standards. This additional homogenization step is found to measurably reduce LMI trends, but the global trends in the LMI of the strongest storms remain positive, with amplitudes of around +1 m s−1 decade−1 and p value = 0.1. Regional trends, in m s−1 decade−1, vary from −2 (p = 0.03) in the western North Pacific, +1.7 (p = 0.06) in the south Indian Ocean, +2.5 (p = 0.09) in the South Pacific, to +8 (p 〈 0.001) in the North Atlantic.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-12-02
    Description: Spatial and temporal covariability between the atmospheric transient eddy heat fluxes (i.e., 〈υ′T′〉 and 〈υ′q′〉) in the Northern Hemisphere winter (January–March) and the paths of the Gulf Stream (GS), Kuroshio Extension (KE), and Oyashio Extension (OE) are examined based on an atmospheric reanalyses and ocean observations for 1979–2009. For the climatological winter mean, the northward heat fluxes by the synoptic (2–8 days) transient eddies exhibit canonical storm tracks with their maxima collocated with the GS and KE/OE. The intraseasonal (8 days–3 months) counterpart, while having overall similar amplitude, shows a spatial pattern with more localized maxima near the major orography and blocking regions. Lateral heat flux divergence by transient eddies as the sum of the two frequency bands exhibits very close coupling with the exact locations of the ocean fronts. Linear regression is used to examine the lead–lag relationship between interannual changes in the northward heat fluxes by the transient eddies and the meridional changes in the paths of the GS, KE, and OE, respectively. One to three years prior to the northward shifts of each ocean front, the atmospheric storm tracks shift northward and intensify, which is consistent with wind-driven changes of the ocean. Following the northward shifts of the ocean fronts, the synoptic storm tracks weaken in all three cases. The zonally integrated northward heat transport by the synoptic transient eddies increases by ~5% of its maximum mean value prior to the northward shift of each ocean front and decreases to a similar amplitude afterward.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-02
    Description: The baiu rainband is a summer rainband stretching from eastern China through Japan toward the northwestern Pacific. The climatological termination of the baiu rainband is investigated using the Japanese 25-yr Reanalysis (JRA-25), a stand-alone atmospheric general circulation model (GCM) forced with observed sea surface temperature (SST) and an atmosphere–ocean GCM (AOGCM). The baiu rainband over the North Pacific abruptly shifts northward and weakens substantially in early July in the atmospheric GCM (AGCM), too early compared to observations (late July). The midtroposphere westerly jet and its thermal advection explain this meridional shift of the baiu rainband, but the ocean surface evaporation modulates the precipitation intensity. In AGCM, deep convection in the subtropical northwestern Pacific sets in prematurely, displacing the westerly jet northward over the cold ocean surface earlier than in observations. The suppressed surface evaporation over the cold ocean suppresses precipitation even though the midtropospheric warm advection and vertically integrated moisture convergence are similar to those before the westerly jet's northward shift. As a result, the baiu rainband abruptly weakens after the northward shift in JRA-25 and AGCM. In AOGCM, cold SST biases in the subtropics inhibit deep convection, delaying the poleward excursion of the westerly jet. As a result, the upward motion induced by both the strong westerly jet and the rainband persist over the northwestern Pacific through summer in the AOGCM. The results indicate that the westerly jet and the ocean evaporation underneath are important for the baiu rainband, the latter suggesting an oceanic effect on this important phenomenon.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-12-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-12-02
    Description: The Weather Research and Forecasting (WRF) model has been configured as a regional climate model for the Hawaii region (HRCM) to assess the uncertainties associated with the pseudo–global warming (PGW) downscaling method using different warming increments from phase 5 of the Coupled Model Intercomparison Project (CMIP5) model experiments. Results from 15-km downscaling experiments using warming increments from 10 individual CMIP5 models for the two warming scenarios representative concentration pathway 4.5 (RCP4.5) and 8.5 (RCP8.5) are compared with experiments using multimodel mean warming increments. The results show that changes in 2-m temperatures, 10-m wind speed, rainfall, water vapor path, and trade wind inversion vary significantly among the individual model experiments. This translates into large uncertainties when picking one particular CMIP5 model to provide the warming increments for dynamical downscaling in the Hawaii region. The simulations also show that, despite the large interexperiment spread, a single downscaling experiment using multimodel mean warming increments gives very similar results to the ensemble mean of downscaling experiments using warming increments obtained from 10 individual CMIP5 models. Robust changes of the projected climate by the end of the twenty-first century in the Hawaii region shown by most downscaling experiments include increasing 2-m temperatures with stronger warming at higher elevations, a large increase in precipitable water, and an increase in the number of days with a trade wind inversion (TWI). Furthermore, most experiments agree on a reduction in TWI height and an increase in the TWI strength. Uncertainties in the projected changes in rainfall and 10-m wind speed are large and there is little consensus among the individual downscaling experiments.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-12-02
    Description: Australia is frequently subject to droughts and floods. Its hydrology is strongly connected to oceanic and atmospheric oscillations (climate modes) such as the El Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), and southern annular mode (SAM). A global 32-yr dataset of remotely sensed surface soil moisture (SSM) was used to examine hydrological variations in mainland Australia for the period 1978–2010. Complex empirical orthogonal function (CEOF) analysis was applied to extract independent signals and to investigate their relationships to climate modes. The annual cycle signal represented 46.3% of the total variance and a low but highly significant connection with SAM was found. Two multiannual signals with a lesser share in total variance (6.3% and 4.2%) were identified. The first one had an unstable period of 2–5 yr and reflected an east–west pattern that can be associated with ENSO and SAM but not with IOD. The second one, a 1- to 5-yr oscillation, formed a dipole pattern between the west and north and can be linked to ENSO and IOD. As expected, relationships with ENSO were found throughout the year and are especially strong during southern spring and summer in the east and north. Somewhat unexpectedly, SAM impacts strongest in the north and east during summer and is proposed as the key driver of the annual SSM signal. The IOD explains SSM variations in the north, east, and southeast during spring and also in the west during winter.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-12-02
    Description: A long data record (14 yr) of ground-based observations at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site is analyzed to document the macroscopic and dynamical properties of daytime fair-weather cumulus clouds during summer months. First, a fuzzy logic–based algorithm is developed to eliminate insect radar echoes in the boundary layer that hinder the ability to develop representative cloud statistics. The refined dataset is used to document the daytime composites of fair-weather cumulus clouds properties. Doppler velocities are processed for lower reflectivity thresholds that contain small cloud droplets having insignificant terminal velocities; thus, Doppler velocities are used as tracers of air motion. The algorithm is implemented to process the entire 14-yr dataset of cloud radar vertical velocity data. Composite diurnal variations of the cloud vertical velocity statistics, surface parameters, and profiles of updraft and downdraft fractions, bulk velocity of updrafts and downdrafts, and updraft and downdraft mass flux are calculated. Statistics on the cloud geometrical properties such as cloud thickness, cloud chord length, cloud spacing, and aspect ratios are calculated on the cloud scale. The present dataset provides a unique insight into the daytime evolution and statistical description of the turbulent structure inside fair-weather cumuli over land.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-12-02
    Description: Based on the analysis of multicentury–millennium integrations of an atmospheric model coupled to the ocean with varying degrees, it is argued that ENSO-like decadal variability is primarily driven by stochastic atmospheric forcing. In particular, the leading mode of internal atmospheric variability over the South Pacific, which projects onto the Pacific–South American (PSA) pattern, plays an important role in modulating the trade winds and sea surface temperature (SST) in the southeast tropical Pacific. Subsequent ocean–atmosphere interactions organize a basinwide SST anomaly pattern in the tropics, which in turn forces atmospheric Rossby waves into the extratropics, reinforcing the PSA pattern and inducing coherent decadal changes in the North Pacific. In the absence of ocean dynamics, equatorial SST variability is reduced and the North Pacific exhibits decadal variability independent of the tropical–South Pacific. The strong tropical–South Pacific linkage may be attributed to the equatorially asymmetric nature of tropical Pacific climate.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-12-02
    Description: Cloud feedback plays a key role in the future climate projection. Using global nonhydrostatic model (GNHM) simulation data for a present-day [control (CTL)] and a warmer [global warming (GW)] experiment, the authors estimate the contribution of tropical cyclones (TCs) to ice water paths (IWP) and liquid water paths (LWP) associated with TCs and their changes between CTL and GW experiments. They use GNHM with a 14-km horizontal mesh for explicitly calculating cloud microphysics without cumulus parameterization. This dataset shows that the cyclogenesis under GW conditions reduces to approximately 70% of that under CTL conditions, as shown in a previous study, and the tropical averaged IWP (LWP) is reduced by approximately 2.76% (0.86%). Horizontal distributions of IWP and LWP changes seem to be closely related to TC track changes. To isolate the contributions of IWP/LWP associated with TCs, the authors first examine the radial distributions of IWP/LWP from the TC center at their mature stages and find that they generally increase for more intense TCs. As the intense TC in GW increases, the IWP and LWP around the TC center in GW becomes larger than that in CTL. The authors next define the TC area as the region within 500 km from the TC center at its mature stages. They find that the TC’s contribution to the total tropical IWP (LWP) is 4.93% (3.00%) in CTL and 5.84% (3.69%) in GW. Although this indicates that the TC’s contributions to the tropical IWP/LWP are small, IWP/LWP changes in each basin behave in a manner similar to those of the cyclogenesis and track changes under GW.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-12-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-12-02
    Description: Changes in tropical cyclone (TC) frequency under anthropogenic climate change are examined for 13 global models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), using the Okubo–Weiss–Zeta parameter (OWZP) TC-detection method developed by the authors in earlier papers. The method detects large-scale conditions within which TCs form. It was developed and tuned in atmospheric reanalysis data and then applied without change to the climate models to ensure model and detector independence. Changes in TC frequency are determined by comparing TC detections in the CMIP5 historical runs (1970–2000) with high emission scenario (representative concentration pathway 8.5) future runs (2070–2100). A number of the models project increases in frequency of higher-latitude tropical cyclones in the late twenty-first century. Inspection reveals that these high-latitude systems were subtropical in origin and are thus eliminated from the analysis using an objective classification technique. TC detections in 8 of the 13 models reproduce observed TC formation numbers and geographic distributions reasonably well, with annual numbers within ±50% of observations. TC detections in the remaining five models are particularly low in number (10%–28% of observed). The eight models with a reasonable TC climatology all project decreases in global TC frequency varying between 7% and 28%. Large intermodel and interbasin variations in magnitude and sign are present, with the greatest variations in the Northern Hemisphere basins. These results are consistent with results from earlier-generation climate models and thus confirm the robustness of coupled model projections of globally reduced TC frequency.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-12-02
    Description: During the last decade, Arctic sea ice cover has experienced an accelerated decline that has been suggested to drive the increased occurrence of extremely cold winter events over continental Europe. Observations and modeling studies seem to support the idea that Mediterranean climate is also changing. In this work, the authors estimate potential effects on the Mediterranean Basin, during the winter period, of Arctic sea ice reduction. Two sets of simulations have been performed by prescribing different values of sea ice concentrations (50% and 20%) on the Barents–Kara Seas in the NCAR Community Atmosphere Model, version 3 (CAM3), as representative of idealized present and future sea ice conditions. Global model simulations have then been used to run the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model, version 4 (RegCM4), over central Europe and the Mediterranean domain. Simulations provide evidence for a large-scale atmospheric circulation response to sea ice reduction, resembling the negative phase of the Arctic Oscillation (AO) and characterized by a wave activity flux from the North Atlantic toward the Mediterranean Basin, during winter months. An increase in the occurrence and intensity of extreme cold events, over continental Europe, and extreme precipitation events, over the entire Mediterranean Basin, was found. In particular, simulations suggest an increased risk of winter flooding in southern Italy, Greece, and the Iberian Peninsula.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-12-02
    Description: Analysis of the 62-yr hindcast outputs from an eddy-resolving ocean general circulation model reveals a prominent decadal variability in the upper-layer (0–745 m) Luzon Strait transport (LST), a key component of the South China Sea throughflow. This variability is in phase with the basin-scale wind stress anomalies associated with the Pacific decadal oscillation (PDO). A composite analysis shows that during the positive phase of the PDO, the Aleutian low and its related positive wind stress curl anomalies intrude southward, reducing the trade winds and enhancing the westerly wind anomalies in the tropical North Pacific. In response, the North Equatorial Current bifurcation shifts northward, resulting in a weaker Kuroshio east of Luzon and consequently a stronger South China Sea throughflow in the upper 745 m.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-12-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-12-02
    Description: The influence of the Atlantic meridional overturning circulation (AMOC) variability on the atmospheric circulation is investigated in a control simulation of the NCAR Community Climate System Model, version 3 (CCSM3), where the AMOC evolves from an oscillatory regime into a red noise regime. In the latter, an AMOC intensification is followed during winter by a positive North Atlantic Oscillation (NAO). The atmospheric response is robust and controlled by AMOC-driven SST anomalies, which shift the heat release to the atmosphere northward near the Gulf Stream/North Atlantic Current. This alters the low-level atmospheric baroclinicity and shifts the maximum eddy growth northward, affecting the storm track and favoring a positive NAO. The AMOC influence is detected in the relation between seasonal upper-ocean heat content or SST anomalies and winter sea level pressure. In the oscillatory regime, no direct AMOC influence is detected in winter. However, an upper-ocean heat content anomaly resembling the AMOC footprint precedes a negative NAO. This opposite NAO polarity seems due to the southward shift of the Gulf Stream during AMOC intensification, displacing the maximum baroclinicity southward near the jet exit. As the mode has somewhat different patterns when using SST, the wintertime impact of the AMOC lacks robustness in this regime. However, none of the signals compares well with the observed influence of North Atlantic SST anomalies on the NAO because SST is dominated in CCSM3 by the meridional shifts of the Gulf Stream/North Atlantic Current that covary with the AMOC. Hence, although there is some potential climate predictability in CCSM3, it is not realistic.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-12-02
    Description: The climate sensitivity uncertainty of global climate models (GCMs) is partly due to the spread of individual feedbacks. One approach to constrain long-term climate sensitivity is to use the relatively short observational record, assuming there exists some relationship in feedbacks between short and long records. The present work tests this assumption by regressing short-term feedback metrics, characterized by the 20-yr feedback as well as interannual and intra-annual metrics, against long-term longwave water vapor, longwave atmospheric temperature, and shortwave surface albedo feedbacks calculated from 13 twentieth-century GCM simulations. Estimates of long-term feedbacks derived from reanalysis observations and statistically significant regressions are consistent with but no more constrained than earlier estimates. For the interannual metric, natural variability contributes to the feedback uncertainty, reducing the ability to estimate the interannual behavior from one 20-yr time slice. For both the interannual and intra-annual metrics, uncertainty in the intermodel relationships between 20-yr metrics and 100-yr feedbacks also contributes to the feedback uncertainty. Because of differences in time scales of feedback processes, relationships between the 20-yr interannual metric and 100-yr water vapor and atmospheric temperature feedbacks are significant for only one feedback calculation method. The intra-annual and surface albedo relationships show more complex behavior, though positive correspondence between Northern Hemisphere surface albedo intra-annual metrics and 100-yr feedbacks is consistent with previous studies. Many relationships between 20-yr metrics and 100-yr feedbacks are sensitive to the specific GCMs included, highlighting that care should be taken when inferring long-term feedbacks from short-term observations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-12-02
    Description: One theorized control on the position of the South Pacific convergence zone (SPCZ) is the amount of low-level inflow from the relatively dry southeastern Pacific basin. Building on an analysis of observed SPCZ region synoptic-scale variability by Lintner and Neelin, composite analysis is performed here on two reanalysis products as well as output from 17 models in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Using low-level zonal wind as a compositing index, it is shown that the CMIP5 ensemble mean, as well as many of the individual models, captures patterns of wind, specific humidity, and precipitation anomalies resembling those obtained for reanalysis fields between weak- and strong-inflow phases. Lead–lag analysis of both the reanalyses and models is used to develop a conceptual model for the formation of each composite phase. This analysis indicates that an equatorward-displaced Southern Hemisphere storm track and an eastward-displaced equatorial eastern Pacific westerly (wind) duct are features of the weak-inflow phase although, as indicated by additional composite analyses based on these features, each appears to account weakly for the details of the low-level inflow composite anomalies. Despite the presence of well-known biases in the CMIP5 simulations of the SPCZ region climate, the models appear to have some fidelity in simulating synoptic-scale relationships between low-level winds, moisture, and precipitation, consistent with observations and simple theoretical understanding of interactions of dry air inflow with deep convection.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-10-29
    Description: Empirical orthogonal function (EOF) analysis is commonly used in the climate sciences and elsewhere to describe, reconstruct, and predict highly dimensional data fields. When data contain a high percentage of missing values (i.e., gappy), alternate approaches must be used in order to correctly derive EOFs. The aims of this paper are to assess the accuracy of several EOF approaches in the reconstruction and prediction of gappy data fields, using the Galapagos Archipelago as a case study example. EOF approaches included least squares estimation via a covariance matrix decomposition [least squares EOF (LSEOF)], data interpolating empirical orthogonal functions (DINEOF), and a novel approach called recursively subtracted empirical orthogonal functions (RSEOF). Model-derived data of historical surface chlorophyll-a concentrations and sea surface temperature, combined with a mask of gaps from historical remote sensing estimates, allowed for the creation of true and observed fields by which to gauge the performance of EOF approaches. Only DINEOF and RSEOF were found to be appropriate for gappy data reconstruction and prediction. DINEOF proved to be the superior approach in terms of accuracy, especially for noisy data with a high estimation error, although RSEOF may be preferred for larger data fields because of its relatively faster computation time.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-10-29
    Description: An evaluation is presented of the impact on tropical climate of continental-scale perturbations given by different representations of land surface processes (LSPs) in a general circulation model that includes atmosphere–ocean interactions. One representation is a simple land scheme, which specifies climatological albedos and soil moisture availability. The other representation is the more comprehensive Simplified Simple Biosphere Model, which allows for interactive soil moisture and vegetation biophysical processes. The results demonstrate that such perturbations have strong impacts on the seasonal mean states and seasonal cycles of global precipitation, clouds, and surface air temperature. The impact is especially significant over the tropical Pacific Ocean. To explore the mechanisms for such impact, model experiments are performed with different LSP representations confined to selected continental-scale regions where strong interactions of climate–vegetation biophysical processes are present. The largest impact found over the tropical Pacific is mainly from perturbations in the tropical African continent where convective heating anomalies associated with perturbed surface heat fluxes trigger global teleconnections through equatorial wave dynamics. In the equatorial Pacific, the remote impacts of the convection anomalies are further enhanced by strong air–sea coupling between surface wind stress and upwelling, as well as by the effects of ocean memory. LSP perturbations over South America and Asia–Australia have much weaker global impacts. The results further suggest that correct representations of LSP, land use change, and associated changes in the deep convection over tropical Africa are crucial to reducing the uncertainty of future climate projections with global climate models under various climate change scenarios.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-10-29
    Description: The simulations and predictions of the hydrological cycle by general circulation models (GCMs) are characterized by a significant degree of uncertainty. This uncertainty is reflected in the range of Intergovernmental Panel on Climate Change (IPCC) GCM predictions of future changes in the hydrological cycle, particularly over major African basins. The confidence in GCM predictions can be increased by evaluating different GCMs, identifying those models that succeed in simulating the hydrological cycle under current climate conditions, and using them for climate change studies. Reanalyses are often used to validate GCMs, but they also suffer from an inaccurate representation of the hydrological cycle. In this study, the aim is to identify GCMs and reanalyses' products that provide a realistic representation of the hydrological cycle over the Congo and upper Blue Nile (UBN) basins. Atmospheric and soil water balance constraints are employed to evaluate the models' ability to reproduce the observed streamflow, which is the most accurate measurement of the hydrological cycle. Among the ECMWF Interim Re-Analysis (ERA-Interim), NCEP–NCAR reanalysis, and 40-yr ECWMF Re-Analysis (ERA-40), ERA-Interim shows the best performance over these basins: it balances the water budgets and accurately represents the seasonal cycle of the hydrological variables. The authors find that most GCMs used by the IPCC overestimate the hydrological cycle compared to observations. They observe some improvement in the simulated hydrological cycle with increased horizontal resolution, which suggests that some of the high-resolution GCMs are better suited for climate change studies over Africa.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-10-16
    Description: A sudden change in the reference Greenland Sea surface temperature (GSST) in 1979 is identified. It is found to be a part of complex changes in the northern North Atlantic seas. The GSST change, in particular, resulted in a major change in the near-surface baroclinicity in the region, in addition to a large change in the net surface heat flux at the air–sea boundary over the Greenland Sea. The differences in the atmospheric mean state between two periods, one before and the other after the GSST change in the late 1970s, resemble those between the high and low North Atlantic Oscillation (NAO) index states. In addition to the changes in the mean state, major changes in the interannual variability of the atmosphere are found. A particularly interesting change in the interannual variability is found in the relationship between July GSST and the NAO phase in the following February. There is a strong correlation between July GSST and the NAO phase in the following February before the late 1970s but not at all after the late 1970s. The characteristics of these changes suggest that they may be a part of the high-frequency details of the Atlantic multidecadal oscillation.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-10-29
    Description: Whereas some studies linked the enhanced tropical cyclone (TC) formation in the North Atlantic basin to the ongoing global warming, other studies attributed it to the warm phase of the Atlantic multidecadal oscillation (AMO). Using the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) Twentieth Century Reanalysis (20CR) dataset, the present study reveals the distinctive spatial patterns associated with the influences of the AMO and global warming on TC formation in the North Atlantic basin. Two leading empirical orthogonal function (EOF) patterns are identified in the climate change of TC formation on time scales longer than interannual. The first pattern is associated with the AMO and its spatial pattern shows the basin-scale enhancement of TC formation during the AMO positive phase. The second pattern is associated with global warming, showing enhanced TC formation in the east tropical Atlantic (5°–20°N, 15°–40°W) and reduced TC formation from the southeast coast of the United States extending southward to the Caribbean Sea. In the warm AMO phase, the basinwide decrease in vertical wind shear and increases in midlevel relative humidity and maximum potential intensity (MPI) favor the basinwide enhancement of TC formation. Global warming suppresses TC formation from the southeast coast of the United States extending southward to the Caribbean Sea through enhancing vertical wind shear and reducing midlevel relative humidity and MPI. The enhanced TC formation in the east tropical Atlantic is due mainly to a local increase in MPI or sea surface temperature (SST), leading to a close relationship between the Atlantic SST and TC activity over the past decades.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-10-29
    Description: In agroclimatology, the rainy season onset and cessation dates are often defined from a combination of several empirical rainfall thresholds. For example, the onset may be the first wet day of N consecutive days receiving at least P millimeters without a dry spell lasting n days and receiving less than p millimeters in the following C days. These thresholds are parameterized empirically in order to fit the requirements of a given crop and to account for local-scale climatic conditions. Such local-scale agroclimatic definition is rigid because each threshold may not be necessarily transposable to other crops and other climate environments. A new approach is developed to define onset/cessation dates and monitor their interannual variability at the regional scale. This new approach is less sensitive to parameterization and local-scale contingencies but still has some significance at the local scale. The approach considers multiple combinations of rainfall thresholds in a principal component analysis so that a robust signal across space and parameters is extracted. The regional-scale onset/cessation date is unequally influenced by input rainfall parameters used for the definition of the local rainy season onset. It appears that P is a crucial parameter to define onset, C plays a significant role at most stations, and N seems to be of marginal influence.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-10-16
    Description: A method of downscaling that isolates the effect of temperature and moisture changes on tropical cyclone (TC) activity was presented in Part I of this study. By applying thermodynamic modifications to analyzed initial and boundary conditions from past TC seasons, initial disturbances and the strength of synoptic-scale vertical wind shear are preserved in future simulations. This experimental design allows comparison of TC genesis events in the same synoptic setting, but in current and future thermodynamic environments. Simulations of both an active (September 2005) and inactive (September 2009) portion of past hurricane seasons are presented. An ensemble of high-resolution simulations projects reductions in ensemble-average TC counts between 18% and 24%, consistent with previous studies. Robust decreases in TC and hurricane counts are simulated with 18- and 6-km grid lengths, for both active and inactive periods. Physical processes responsible for reduced activity are examined through comparison of monthly and spatially averaged genesis-relevant parameters, as well as case studies of development of corresponding initial disturbances in current and future thermodynamic conditions. These case studies show that reductions in TC counts are due to the presence of incipient disturbances in marginal moisture environments, where increases in the moist entropy saturation deficits in future conditions preclude genesis for some disturbances. Increased convective inhibition and reduced vertical velocity are also found in the future environment. It is concluded that a robust decrease in TC frequency can result from thermodynamic changes alone, without modification of vertical wind shear or the number of incipient disturbances.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-10-16
    Description: The climate system model of the National Center for Atmospheric Research is used to examine the predictability arising from the land surface initialization of seasonal climate ensemble forecasts in current, preindustrial, and projected future settings. Predictability is defined in terms of the model's ability to predict its own interannual variability. Predictability from the land surface in this model is relatively weak compared to estimates from other climate models but has much of the same spatial and temporal structure found in previous studies. Several factors appear to contribute to the weakness, including a low correlation between surface fluxes and subsurface soil moisture, less soil moisture memory (lagged autocorrelation) than other models or observations, and relative insensitivity of the atmospheric boundary layer to surface flux variations. Furthermore, subseasonal cyclical behavior in plant phenology for tropical grasses introduces spurious unrealistic predictability at low latitudes during dry seasons. Despite these shortcomings, intriguing changes in predictability are found. Areas of historical land use change appear to have experienced changes in predictability, particularly where agriculture expanded dramatically into the Great Plains of North America, increasing land-driven predictability there. In a warming future climate, land–atmosphere coupling strength generally increases, but added predictability does not always follow; many other factors modulate land-driven predictability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-10-29
    Description: This study focuses on statistical analysis of anomalous tropical cyclone (TC) activities and the physical mechanisms behind these anomalies. Different patterns of decaying of the warm sea surface temperature anomaly (SSTA) over the equatorial central-eastern Pacific are categorized into three types: eastern Pacific warming decaying to La Niña (EPWDL), eastern Pacific warming decaying to a neutral phase (EPWDN), and a central Pacific warming decaying year (CPWD). Differences in TC activity over the western North Pacific (WNP) corresponding to the above three types are discussed, and possible mechanisms are proposed. For EPWDL, TC genesis shows a significant positive (negative) anomaly over the northwestern (southeastern) WNP and more TCs move westward and make landfall over the southern East Asian coast. This is attributed primarily to the combined modulation of La Niña and the warm equatorial east Indian Ocean SSTA. For EPWDN, enhanced TC genesis is observed over the northeastern WNP, and suppressed TC activity is located mainly in the zonal region extending from the Philippine Sea to the eastern WNP, close to 160°E. Most of the TCs formed over the eastern WNP experience early recurvature east of 140°E, then move northeastward; hence, fewer TCs move northwestward to make landfall over the East Asian coast. For CPWD, the enhanced TC activity appears over the western WNP. This is due to the weak anomalous cyclonic circulation over the Philippines, primarily caused by the weaker, more westward-shifting warm SSTA compared to that in the previous warming year over the central Pacific.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-10-04
    Description: The Antarctic ice sheet constitutes the largest reservoir of freshwater on earth, representing tens of meters of sea level rise if it were to melt completely. However, because of the remote location of the continent and the concomitant sparse data coverage, much remains unknown regarding the climate variability in Antarctica and the surrounding Southern Ocean. This study uses the high-resolution ECMWF Interim Re-Analysis (ERA-Interim) data during 1979–2010 to calculate the meridional moisture transport associated with the mean circulation, planetary waves, and synoptic-scale systems. The resulting moisture flux, which is dominated by the synoptic scales, is largely consistent with results from theoretical assumptions and previous studies. Here, high interannual and regional variability in the total meridional moisture flux is found, with no significant trend over the last 30 years. Further, the variability of the meridional moisture flux cannot be explained by the southern annular mode or El Niño–Southern Oscillation, even in the Pacific sector. In addition, the Amundsen Sea sector experiences the highest variability in meridional moisture transport and reveals a statistically significant decrease in the moisture flux at synoptic scales along the coastal zone. These results suggest that the Amundsen Sea provides a window on the complex nature of atmospheric moisture transport in the high southern latitudes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-10-16
    Description: The seasonal and interannual variability of the structure, evolution, and propagation of midlatitude cyclones in the southeast United States are studied using a composite analysis. In the upper levels, the composites show that the axis of the wintertime upper-level trough remains north–south oriented and propagates eastward along 40°N, while the summertime upper-level trough has a much slower propagation at a farther north latitude and an axis that is tilted in the northeast–southwest direction. Upper-level circulation changes are consistent with a shift from wintertime “cyclonic behavior” to summertime “anticyclonic behavior” midlatitude cyclones. Significant changes in the low-level structure and precipitation patterns of midlatitude cyclones ensue from these upper-level changes. While the winter composite is characterized by eastward-propagating midlatitude cyclones that extend deep into the subtropics, the summer composite is characterized by semistationary midlatitude troughs that only briefly skirt the subtropics. Wintertime precipitation occurs only in and ahead of the surface low pressure center, whereas summertime precipitation occurs in all days of the composite. As a result, over 70% (30%) of wintertime (summertime) precipitation in the Carolinas occurs on days when midlatitude cyclones are present. The wintertime composites also show that midlatitude cyclones produce more precipitation on the windward side of the Appalachians than over the Carolinas, suggesting a rain shadow effect of the mountains. The ENSO-related variability of the structure, evolution, and propagation of midlatitude cyclones shows the presence of a more intense and southward-displaced upper-level jet, stronger midlatitude cyclones, and more intense precipitation over a larger area during El Niño than La Niña or normal years.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-10-29
    Description: Deep tropical convection over the Indian Ocean leads to intense diabatic heating, a main driver of the climate system. The Northern Hemisphere circulation and precipitation associated with intraseasonal and seasonal-to-interannual components of the leading pattern of Indian Ocean convection are investigated for November–April 1979–2008. The leading pattern of Indian Ocean convection is separated into intraseasonal and seasonal-to-interannual components by filtering an index of outgoing longwave radiation at 33–105 days and greater than 105 days, yielding Madden–Julian oscillation (MJO)- and El Niño–Southern Oscillation (ENSO)-influenced patterns, respectively. Observations and barotropic Rossby wave ray tracing experiments suggest that Indian Ocean convection can influence the ENSO-related hemispheric teleconnection pattern in addition to the regional Asian teleconnection. Equivalent barotropic circulation anomalies throughout the Northern Hemisphere subtropics are associated with both seasonal-to-interannual Indian Ocean convection and ENSO. The hemispheric teleconnection associated with seasonal-to-interannual Indian Ocean convection is investigated with ray tracing, which suggests that forcing over the Indian Ocean can propagate eastward across the hemisphere and back to Asia. The relationship between the seasonal-to-interannual component of Indian Ocean convection and ENSO is investigated in terms of a gradient in sea surface temperatures (SST) over the equatorial western Pacific Ocean. When the western Pacific SST gradient is strong during ENSO, strong Maritime Continent precipitation extends further westward into the Indian Ocean, which is accompanied by enhanced tropospheric Asian circulation, similar to the seasonal-to-interannual component of Indian Ocean convection. Analysis of the three strongest interannual convection seasons shows that the strong Indian Ocean pattern of ENSO can dominate individual seasons.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-10-29
    Description: This study investigates interannual variability in the frequency of occurrence of daily surface air temperature (SAT) extremes over East Asia in summer and winter between 1979 and 2009. In particular, this study examines the dominant seasonal SAT patterns, as obtained through empirical orthogonal function (EOF) analysis, and the associated variability in SAT extreme occurrence. Overall, the authors find that changes in extreme temperature occurrence associated with these dominant patterns are impacted by both shifts and narrowing/broadening of the subseasonal SAT probability distribution functions (PDFs). In summer, the leading pattern features large SAT anomalies in midlatitude East Asia centered over Mongolia. Over this center of action, positive SAT anomalies are accompanied by decreased precipitation and soil moisture, which increases the ratio of sensible to latent heat flux. Consequently, subseasonal SAT variance increases, resulting in an enhanced occurrence of positive SAT extremes relative to a simple SAT PDF shift. In winter, the leading pattern, which is highly correlated with the Arctic Oscillation, features large loadings in high-latitude Siberia that decay southward. In contrast with summer, large-scale dynamics play a larger role in the leading pattern: positive SAT anomalies are accompanied by a weakened and northward-shifted storm track, reduced subseasonal SAT variance, and a more pronounced decrease of cold extreme occurrence relative to a simple PDF shift. Finally, a brief look at the secular trends suggests that both shifts and narrowing/broadening of the PDF may also impact long-term trends in SAT extreme occurrence over some regions of East Asia.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-10-29
    Description: The Atlantic meridional overturning circulation (AMOC) is an important component of the North Atlantic climate system. Here, simulations from 10 coupled climate models are used to calculate patterns of sea surface temperature (SST) and subsurface density change associated with decadal AMOC variability. The models are evaluated using observational constraints and it is shown that all 10 models suffer from North Atlantic Deep Water transports that are too shallow, although the biases are least severe in the Community Climate System Model, version 4 (CCSM4). In the models that best compare with observations, positive AMOC anomalies are associated with reduced Labrador Sea stratification and increased midocean (800–1800 m) densities in the subpolar gyre. Maximum correlations occur when AMOC anomalies lag Labrador Sea stratification and subsurface density anomalies by 2–6 yr and 0–3 yr, respectively. In all 10 models, North Atlantic warming follows positive AMOC anomalies, but the patterns and magnitudes of SST change are variable. A simple detection and attribution analysis is then used to evaluate the utility of Atlantic midocean density and Labrador Sea stratification indices for detecting changes to the AMOC in the presence of increasing CO2 concentrations. It is shown that trends in midocean density are identifiable (although not attributable) significantly earlier than trends in the AMOC. For this reason, subsurface density observations could be a useful complement to transport observations made at specific latitudes and may help with the more rapid diagnosis of basin-scale changes in the AMOC. Using existing observations, it is not yet possible to detect a robust trend in the AMOC using either midocean densities or transport observations from 26.5°N.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-10-16
    Description: In recent decades, Southern Hemisphere midlatitude regions such as southern Africa, southeastern Australia, and southern Chile have experienced a reduction in austral autumn precipitation; the cause of which is poorly understood. This study focuses on the ability of global climate models that form part of the Coupled Model Intercomparison Project phase 5 to simulate these trends, their relationship with extratropical and subtropical processes, and implications for future precipitation changes. Models underestimate both the historical autumn poleward expansion of the subtropical dry zone and the positive southern annular mode (SAM) trend. The multimodel ensemble (MME) is also unable to capture the spatial pattern of observed precipitation trends across semiarid midlatitude regions. However, in temperate regions that are located farther poleward such as southern Chile, the MME simulates observed precipitation declines. The MME shows a strong consensus in twenty-first-century declines in autumn precipitation across southern Chile in both the medium–low and high representative concentration pathway (RCP) scenarios and across southern Africa in the high RCP scenario, but little change across southeastern Australia. Projecting a strong positive SAM trend and continued subtropical dry-zone expansion, the models converge on large SAM and dry-zone-expansion-induced precipitation declines across southern midlatitudes. In these regions, the strength of future precipitation trends is proportional to the strength of modeled trends in these phenomena, suggesting that unabated greenhouse gas–induced climate change will have a large impact on austral autumn precipitation in such midlatitude regions.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-10-29
    Description: Numerical models have long predicted that the deforestation of the Amazon would lead to large regional changes in precipitation and temperature, but the extratropical effects of deforestation have been a matter of controversy. This paper investigates the simulated impacts of deforestation on the northwest United States December–February climate. Integrations are carried out using the Ocean–Land–Atmosphere Model (OLAM), here run as a variable-resolution atmospheric GCM, configured with three alternative horizontal grid meshes: 1) 25-km characteristic length scale (CLS) over the United States, 50-km CLS over the Andes and Amazon, and 200-km CLS in the far-field; 2) 50-km CLS over the United States, 50-km CLS over the Andes and Amazon, and 200-km CLS in the far-field; and 3) 200-km CLS globally. In the high-resolution simulations, deforestation causes a redistribution of precipitation within the Amazon, accompanied by vorticity and thermal anomalies. These anomalies set up Rossby waves that propagate into the extratropics and impact western North America. Ultimately, Amazon deforestation results in 10%–20% precipitation reductions for the coastal northwest United States and the Sierra Nevada. Snowpack in the Sierra Nevada experiences declines of up to 50%. However, in the coarse-resolution simulations, this mechanism is not resolved and precipitation is not reduced in the northwest United States. These results highlight the need for adequate model resolution in modeling the impacts of Amazon deforestation. It is concluded that the deforestation of the Amazon can act as a driver of regional climate change in the extratropics, including areas of the western United States that are agriculturally important.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-10-29
    Description: This study analyzes the response of global water vapor to global warming in a series of fully coupled climate model simulations. The authors find that a roughly 7% K−1 rate of increase of water vapor with global surface temperature is robust only for rapid anthropogenic-like climate change. For slower warming that occurred naturally in the past, the Southern Ocean has time to equilibrate, producing a different pattern of surface warming, so that water vapor increases at only 4.2% K−1. This lower rate of increase of water vapor with warming is not due to relative humidity changes or differences in mean lower-tropospheric temperature. A temperature of over 80°C would be required in the Clausius–Clapeyron relationship to match the 4.2% K−1 rate of increase. Instead, the low rate of increase is due to spatially heterogeneous warming. During slower global warming, there is enhanced warming at southern high latitudes, and hence less warming in the tropics per kelvin of global surface temperature increase. This leads to a smaller global water vapor increase, because most of the atmospheric water vapor is in the tropics. A formula is proposed that applies to general warming scenarios. This study also examines the response of global-mean precipitation and the meridional profile of precipitation minus evaporation and compares the latter to thermodynamic scalings. It is found that global-mean precipitation changes are remarkably robust between rapid and slow warming. Thermodynamic scalings for the rapid- and slow-warming zonal-mean precipitation are similar, but the precipitation changes are significantly different, suggesting that circulation changes are important in driving these differences.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-10-16
    Description: Like any fluid heated from below, the atmosphere is subject to vertical instability that triggers convection. Convection occurs on small time and space scales, which makes it a challenging feature to include in climate models. Usually subgrid parameterizations are required. Here, an alternative view based on a global thermodynamic variational principle is developed. Convective flux profiles and temperature profiles at steady state are computed in an implicit way by maximizing the associated entropy production rate. Two settings are examined, corresponding respectively to an idealized case of a gray atmosphere and a realistic case based on a net exchange formulation radiative scheme. In the second case, the effect of variations of the atmospheric composition, such as a doubling of the carbon dioxide concentration, is also discussed.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-10-16
    Description: Given the large discrepancies that exist in climate models for shortwave cloud forcing over eastern China (EC), the dynamic (vertical motion and horizontal circulation) and thermodynamic (stability) relations of stratus clouds and the associated cloud radiative forcing in the cold season are examined. Unlike the stratus clouds over the southeastern Pacific Ocean (as a representative of marine boundary stratus), where thermodynamic forcing plays a primary role, the stratus clouds over EC are affected by both dynamic and thermodynamic factors. The Tibetan Plateau (TP)-forced low-level large-scale lifting and high stability over EC favor the accumulation of abundant saturated moist air, which contributes to the formation of stratus clouds. The TP slows down the westerly overflow through a frictional effect, resulting in midlevel divergence, and forces the low-level surrounding flows, resulting in convergence. Both midlevel divergence and low-level convergence sustain a rising motion and vertical water vapor transport over EC. The surface cold air is advected from the Siberian high by the surrounding northerly flow, causing low-level cooling. The cooling effect is enhanced by the blocking of the YunGui Plateau. The southwesterly wind carrying warm, moist air from the east Bay of Bengal is uplifted by the HengDuan Mountains via topographical forcing; the midtropospheric westerly flow further advects the warm air downstream of the TP, moistening and warming the middle troposphere on the lee side of the TP. The low-level cooling and midlevel warming together increase the stability. The favorable dynamic and thermodynamic large-scale environment allows for the formation of stratus clouds over EC during the cold season.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-10-29
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-10-04
    Description: The relationship between El Niño–Southern Oscillation (ENSO) and tropical storm (TS) activity over the western North Pacific Ocean is examined for the period from 1981 to 2010. In El Niño years, TS genesis locations are generally shifted to the southeast relative to normal years and the passages of TSs tend to recurve to the northeast. TSs of greater duration and more intensity during an El Niño summer induce an increase of the accumulated tropical cyclone kinetic energy (ACE). Based on the strong relationship between the TS properties and ENSO, a probabilistic prediction for seasonal ACE is investigated using a hybrid dynamical–statistical model. A statistical relationship is developed between the observed ACE and large-scale variables taken from the ECMWF seasonal forecast system 4 hindcasts. The ACE correlates positively with the SST anomaly over the central to eastern Pacific and negatively with the vertical wind shear near the date line. The vertical wind shear anomalies over the central and western Pacific are selected as predictors based on sensitivity tests of ACE predictive skill. The hybrid model performs quite well in forecasting seasonal ACE with a correlation coefficient between the observed and predicted ACE at 0.80 over the 30-yr period. A relative operating characteristic analysis also indicates that the ensembles have significant probabilistic skill for both the above-normal and below-normal categories. By comparing the ACE prediction over the period from 2003 to 2011, the hybrid model appears more skillful than the forecast from the Tropical Storm Risk consortium.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-09-24
    Description: This paper mainly addresses two issues that concern the longwave climate feedbacks. First, it is recognized that the radiative forcing of greenhouse gases, as measured by their impact on the outgoing longwave radiation (OLR), may vary across different climate models even when the concentrations of these gases are identically prescribed. This forcing variation contributes to the discrepancy in these models' projections of surface warming. A method is proposed to account for this effect in diagnosing the sensitivity and feedbacks in the models. Second, it is shown that the stratosphere is an important factor that affects the OLR in transient climate change. Stratospheric water vapor and temperature changes may both act as a positive feedback mechanism during global warming and cannot be fully accounted as a “stratospheric adjustment” of radiative forcing. Neglecting these two issues may cause a bias in the longwave cloud feedback diagnosed as a residual term in the decomposition of OLR variations. There is no consensus among the climate models on the sign of the longwave cloud feedback after accounting for both issues.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-09-24
    Description: Making use of the extensive shipboard and aircraft measurements of aerosol properties over the oceanic regions surrounding the Indian peninsula, under the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) field experiment during the premonsoon season (March–May), supplemented with long-term satellite data and chemical transport model simulations, investigations are made of the east–west and north–south gradients in aerosol properties and estimated radiative forcing, over the oceans around India. An eastward gradient has been noticed in most of the aerosol parameters that persisted both within the marine atmospheric boundary layer and above up to an altitude of ~6 km; the gradients being steeper at higher altitudes. It was also noticed that the north–south gradient has contrasting patterns over the Bay of Bengal and the Arabian Sea on the either side of the Indian peninsula. The aerosol-induced atmospheric heating rate increased from a low value of ≤0.1 K day−1 in the southwestern Arabian Sea to as high as ~0.5 K day−1 over the northeastern Bay of Bengal. The simulations of species-resolved spatial gradients have revealed that the observed gradients are the result of the strong modulations by anthropogenic species over the natural gradients, thereby emphasizing the role of human activities in imparting regional forcing. These large spatial gradients in aerosol forcing induced by mostly anthropogenic aerosols over the oceanic regions around the Indian peninsula can potentially affect the regional circulation patterns.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-09-09
    Description: The authors assess the ability of 18 Earth system models to simulate the land and ocean carbon cycle for the present climate. These models will be used in the next Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) for climate projections, and such evaluation allows identification of the strengths and weaknesses of individual coupled carbon–climate models as well as identification of systematic biases of the models. Results show that models correctly reproduce the main climatic variables controlling the spatial and temporal characteristics of the carbon cycle. The seasonal evolution of the variables under examination is well captured. However, weaknesses appear when reproducing specific fields: in particular, considering the land carbon cycle, a general overestimation of photosynthesis and leaf area index is found for most of the models, while the ocean evaluation shows that quite a few models underestimate the primary production.The authors also propose climate and carbon cycle performance metrics in order to assess whether there is a set of consistently better models for reproducing the carbon cycle. Averaged seasonal cycles and probability density functions (PDFs) calculated from model simulations are compared with the corresponding seasonal cycles and PDFs from different observed datasets. Although the metrics used in this study allow identification of some models as better or worse than the average, the ranking of this study is partially subjective because of the choice of the variables under examination and also can be sensitive to the choice of reference data. In addition, it was found that the model performances show significant regional variations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-08-23
    Description: A planetary boundary layer (PBL) height climatology from ECMWF reanalysis data is generated and analyzed. Different methods are first compared to derive PBL heights from atmospheric temperature, pressure, and relative humidity (RH), which mostly make use of profile gradients, for example, in RH, refractivity, and virtual or potential temperature. Three methods based on the vertical gradient of RH, virtual temperature, and potential temperature were selected for the climatology generation. The RH-based method appears to capture the inversion that caps the convective boundary layer very well as a result of its temperature and humidity dependence, while the temperature-based methods appear to capture the PBL better at high latitudes. A validation of the reanalysis fields with collocated radiosonde data shows generally good agreement in terms of mean PBL height and standard deviation for the RH-based method. The generated ECMWF-based PBL height climatology shows many of the expected climatological features, such as a fairly low PBL height near the west coast of continents where stratus clouds are found and PBL growth as the air is advected over warmer waters toward the tropics along the trade winds. Large seasonal and diurnal variations are primarily found over land. The PBL height can exceed 3 km, mostly over desert areas during the day, although large values can also be found in areas such as the ITCZ. The robustness of the statistics was analyzed by using information on the percentage of outliers. Here in particular, the sea-based PBL was found to be very stable.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-09-09
    Description: Meteorological station records, ice cores, and regional climate model output are combined to develop a continuous 171-yr (1840–2010) reconstruction of Greenland ice sheet climatic surface mass balance (Bclim) and its subcomponents including near-surface air temperature (SAT) since the end of the Little Ice Age. Independent observations are used to assess and compensate errors. Melt water production is computed using separate degree-day factors for snow and bare ice surfaces. A simple meltwater retention scheme yields the time variation of internal accumulation, runoff, and bare ice area. At decadal time scales over the 1840–2010 time span, summer (June–August) SAT increased by 1.6°C, driving a 59% surface meltwater production increase. Winter warming was +2.0°C. Substantial interdecadal variability linked with episodic volcanism and atmospheric circulation anomalies is also evident. Increasing accumulation and melt rates, bare ice area, and meltwater retention are driven by increasing SAT. As a consequence of increasing accumulation and melt rates, calculated meltwater retention by firn increased 51% over the period, nearly compensating a 63% runoff increase. Calculated ice sheet end of melt season bare ice area increased more than 5%. Multiple regression of interannual SAT and precipitation anomalies suggests a dominance of melting on Bclim and a positive SAT precipitation sensitivity (+32 Gt yr−1 K−1 or 6.8% K−1). The Bclim component magnitudes from this study are compared with results from Hanna et al. Periods of shared interannual variability are evident. However, the long-term trend in accumulation differs in sign.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-09-09
    Description: Reconstructions of past climate show notable temperature variability over the past millennium, with relatively warm conditions during the Medieval Climate Anomaly (MCA) and a relatively cold Little Ice Age (LIA). Multimodel simulations of the past millennium are used together with a wide range of reconstructions of Northern Hemispheric mean annual temperature to separate climate variability from 850 to 1950 CE into components attributable to external forcing and internal climate variability. External forcing is found to contribute significantly to long-term temperature variations irrespective of the proxy reconstruction, particularly from 1400 onward. Over the MCA alone, however, the effect of forcing is only detectable in about half of the reconstructions considered, and the response to forcing in the models cannot explain the warm conditions around 1000 CE seen in some reconstructions. The residual from the detection analysis is used to estimate internal variability independent from climate modeling, and it is found that the recent observed 50- and 100-yr hemispheric temperature trends are substantially larger than any of the internally generated trends even using the large residuals over the MCA. Variations in solar output and explosive volcanism are found to be the main drivers of climate change from 1400 to 1900, but for the first time a significant contribution from greenhouse gas variations to the cold conditions during 1600–1800 is also detected. The proxy reconstructions tend to show a smaller forced response than is simulated by the models. This discrepancy is shown, at least partly, to be likely associated with the difference in the response to large volcanic eruptions between reconstructions and model simulations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-09-09
    Description: In today's climate, the annually averaged surface air temperature in the Northern Hemisphere (NH) is 1°–2°C higher than in the Southern Hemisphere (SH). Historically, this interhemispheric temperature difference has been attributed to a number of factors, including seasonal differences in insolation, the larger area of (tropical) land in the NH, the particularities of the Antarctic in terms of albedo and temperature, and northward heat transport by ocean circulation. A detailed investigation of these factors and their contribution to the temperature difference, however, has to the authors' knowledge not been performed so far. Here the origin of the interhemispheric temperature difference is traced using an assessment of climatological data and the observed energy budget of Earth as well as model simulations. It is found that for the preindustrial climate the temperature difference is predominantly due to meridional heat transport in the oceans, with an additional contribution from the albedo differences between the polar regions. The combination of these factors (that are to some extent coupled) governs the evolution of the temperature difference over the past millennium. Since the beginning of industrialization the interhemispheric temperature difference has increased due to melting of sea ice and snow in the NH. Furthermore, the predicted higher rate of warming over land as compared to the oceans contributes to this increase. Simulations for the twenty-first century show that the interhemispheric temperature difference continues to grow for the highest greenhouse gas emission scenarios due to the land–ocean warming contrast and the strong loss of Arctic sea ice, whereas the decrease in overturning strength dominates for the more moderate scenarios.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-09-09
    Description: The ratio of warming to cumulative emissions of carbon dioxide has been shown to be approximately independent of time and emissions scenarios and directly relates emissions to temperature. It is therefore a potentially important tool for climate mitigation policy. The transient climate response to cumulative carbon emissions (TCRE), defined as the ratio of global-mean warming to cumulative emissions at CO2 doubling in a 1% yr−1 CO2 increase experiment, ranges from 0.8 to 2.4 K EgC−1 in 15 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5)—a somewhat broader range than that found in a previous generation of carbon–climate models. Using newly available simulations and a new observational temperature dataset to 2010, TCRE is estimated from observations by dividing an observationally constrained estimate of CO2-attributable warming by an estimate of cumulative carbon emissions to date, yielding an observationally constrained 5%–95% range of 0.7–2.0 K EgC−1.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-10-04
    Description: This paper proposes a new approach to linearly combining multimodel forecasts, called scale-selective ridge regression, which ensures that the weighting coefficients satisfy certain smoothness constraints. The smoothness constraint reflects the “prior assumption” that seasonally predictable patterns tend to be large scale. In the absence of a smoothness constraint, regression methods typically produce noisy weights and hence noisy predictions. Constraining the weights to be smooth ensures that the multimodel combination is no less smooth than the individual model forecasts. The proposed method is equivalent to minimizing a cost function comprising the familiar mean square error plus a “penalty function” that penalizes weights with large spatial gradients. The method reduces to pointwise ridge regression for a suitable choice of constraint. The method is tested using the Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) hindcast dataset during 1960–2005. The cross-validated skill of the proposed forecast method is shown to be larger than the skill of either ordinary least squares or pointwise ridge regression, although the significance of this difference is difficult to test owing to the small sample size. The model weights derived from the method are much smoother than those obtained from ordinary least squares or pointwise ridge regression. Interestingly, regressions in which the weights are completely independent of space give comparable overall skill. The scale-selective ridge is numerically more intensive than pointwise methods since the solution requires solving equations that couple all grid points together.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-08-23
    Description: Characteristics of Northern Hemisphere extratropical cyclone activity were compared for five concurrent reanalyses: the NCEP–U.S. Department of Energy (DOE) reanalysis (herein NCEP–DOE), the Japanese 25-year Reanalysis Project (JRA-25), the ECMWF Interim Re-Analysis (ERA-Interim), the National Aeronautics and Space Administration's Modern-Era Retrospective Analysis for Research and Applications (NASA-MERRA), and the NCEP Climate Forecast System Reanalysis (NCEP-CFSR), for the period 1979–2010 using a single cyclone tracking algorithm. The total number of cyclones, ranging from 1400 to more than 1800 yr−1, was found to depend strongly on the spatial resolution of the respective reanalysis. The largest cyclone population was identified using NASA-MERRA data, which also showed the highest occurrence of very deep cyclones. Of the reanalyses, two (NCEP–DOE and ERA-Interim) are associated with statistically significant positive trends in the total number of cyclones from 1% to 2% decade−1. These trends result from moderate and shallow cyclones contributing to approximately 90% of the total cyclone count on average. The number of very deep cyclones (
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-08-23
    Description: The El Niño–Southern Oscillation (ENSO) tends to behave arguably as two different “types” or “flavors” in recent decades. One is the canonical cold-tongue-type ENSO with major sea surface temperature anomalies (SSTA) positioned over the eastern Pacific. The other is a warm-pool-type ENSO with SSTA centered in the central Pacific near the edge of the warm pool. In this study, the basic features and main feedback processes of these two types of ENSO are examined. It is shown that the interannual variability of upper-ocean heat content exhibits recharge–discharge processes throughout the life cycles of both the cold tongue (CT) and warm pool (WP) ENSO types. Through a heat budget analysis with focus on the interannual frequency band, the authors further demonstrate that the thermocline feedback plays a dominant role in contributing to the growth and phase transitions of both ENSO types, whereas the zonal advective feedback contributes mainly to their phase transitions. The westward shift of the SSTA center of the WP ENSO and the presence of significant surface easterly wind anomalies over the far eastern equatorial Pacific during its mature warm phase are the two main factors that lead to a reduced positive feedback for the eastern Pacific SSTA. Nevertheless, both the WP and CT ENSO can be understood to a large extent by the recharge oscillator mechanism.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-09-24
    Description: This study assesses the ability of the Coupled Model Intercomparison Project phase 5 (CMIP5) simulations in capturing the interdecadal precipitation enhancement over the Yangtze River valley (YRV) and investigates the contributions of Arctic temperature and mid- to high-latitude warming to the interdecadal variability of the East Asian summer monsoon rainfall. Six CMIP5 historical simulations including models from the Canadian Centre for Climate Modeling and Analysis (CCCma), the Beijing Climate Center, the Max Planck Institute for Meteorology, the Meteorological Research Institute, the Met Office Hadley Centre, and NCAR are used. The NCEP–NCAR reanalysis and observed precipitation are also used for comparison. Among the six CMIP5 simulations, only CCCma can approximately simulate the enhancement of interdecadal summer precipitation over the YRV in 1990–2005 relative to 1960–75; the various relationships between the summer precipitation and surface temperature (Ts), 850-hPa winds, and 500-hPa height field (H500); and the relationships between Ts and H500 determined using regression, correlation, and singular value decomposition (SVD) analyses. It is found that CCCma can reasonably simulate the interdecadal surface warming over the boreal mid- to high latitudes in winter, spring, and summer. The summer Baikal blocking anomaly is postulated to be the bridge that links the winter and spring surface warming over the mid- to high latitude and Arctic with the enhancement of summer precipitation over the YRV. Models that missed some or all of these relationships found in CCCma and the reanalysis failed to simulate the interdecadal enhancement of precipitation over the YRV. This points to the importance of Arctic and mid- to high-latitude processes on the interdecadal variability of the East Asian summer monsoon and the challenge for global climate models to correctly simulate the linkages.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-09-24
    Description: Pithan and Mauritsen argue that the 2009 results of Boé et al. are not consistent with current understanding of the lapse-rate feedback in the Arctic. They also argue that these results arise to an important extent from self-correlation issues. In this response, the authors argue that their results are not inconsistent with current understanding of lapse-rate feedback and demonstrate that the conclusions remain unchanged when all possibilities of self-correlation are excluded.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-09-24
    Description: Some climate datasets are incomplete at certain places and times. A novel technique called the point estimation model of Biased Sentinel Hospitals-based Area Disease Estimation (P-BSHADE) is introduced to interpolate missing data in temperature datasets. Effectiveness of the technique was empirically evaluated in terms of an annual temperature dataset from 1950 to 2000 in China. The P-BSHADE technique uses a weighted summation of observed stations to derive unbiased and minimum error variance estimates of missing data. Both the ratio and covariance between stations were used in calculation of these weights. In this way, interpolation of missing data in the temperature dataset was improved, and best linear unbiased estimates (BLUE) were obtained. Using the same dataset, performance of P-BSHADE was compared against three estimators: kriging, inverse distance weighting (IDW), and spatial regression test (SRT). Kriging and IDW assume a homogeneous stochastic field, which may not be the case. SRT employs spatiotemporal data and has the potential to consider temperature nonhomogeneity caused by topographic differences, but has no objective function for the BLUE. Instead, P-BSHADE takes into account geographic spatial autocorrelation and nonhomogeneity, and maximizes an objective function for the BLUE of the target station. In addition to the theoretical advantages of P-BSHADE over the three other methods, case studies for an annual Chinese temperature dataset demonstrate its empirical superiority, except for the SRT from 1950 to 1970.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-09-24
    Description: The authors report on the implementation and evaluation of a 48-member ensemble adjustment Kalman filter (EAKF) for the ocean component of the Community Climate System Model, version 4 (CCSM4). The ocean assimilation system described was developed to support the eventual generation of historical ocean-state estimates and ocean-initialized climate predictions with the CCSM4 and its next generation, the Community Earth System Model (CESM). In this initial configuration of the system, daily subsurface temperature and salinity data from the 2009 World Ocean Database are assimilated into the ocean model from 1 January 1998 to 31 December 2005. Each ensemble member of the ocean is forced by a member of an independently generated CCSM4 atmospheric EAKF analysis, making this a loosely coupled framework. Over most of the globe, the time-mean temperature and salinity fields are improved relative to an identically forced ocean model simulation without assimilation. This improvement is especially notable in strong frontal regions such as the western and eastern boundary currents. The assimilation system is most effective in the upper 1000 m of the ocean, where the vast majority of in situ observations are located. Because of the shortness of this experiment, ocean variability is not discussed. Challenges that arise from using an ocean model with strong regional biases, coarse resolution, and low internal variability to assimilate real observations are discussed, and areas of ongoing improvement for the assimilation system are outlined.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-23
    Description: For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations, MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-08-23
    Description: Ranking years based on statistical estimates of regional and temporal averages is subject to uncertainty. This uncertainty can in fact be quite substantial and can be described by the rank distribution of an ensemble of such averages. The authors develop a method for estimating it using simulation. The effect of temporal correlation is quite limited in the case studied in this paper: the contiguous United States' annual-mean temperature. The method also allows assessment of derived quantities such as the probability of a given year being one of the 10 warmest in the historical record.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-09-09
    Description: This study shows that the African easterly wave (AEW) activity over the African monsoon region and the northern tropical Atlantic can be divided in two distinct temporal bands with time scales of 2.5–6 and 6–9 days. The results are based on a two-dimensional ensemble empirical mode decomposition (2D-EEMD) of the Modern-Era Retrospective Analysis for Research and Applications (MERRA). The novel result of this investigation is that the 6–9-day waves appear to be located predominantly to the north of the African easterly jet (AEJ), originate at the jet level, and are different in scale and structure from the well-known low-level 2.5–6-day waves that develop baroclinically on the poleward flank of the AEJ. Moreover, they appear to interact with midlatitude eastward-propagating disturbances, with the strongest interaction taking place at the latitudes where the core of the Atlantic high pressure system is located. Composite analyses applied to the mode decomposition indicate that the interaction of the 6–9-day waves with midlatitude systems is characterized by enhanced southerly (northerly) flow from (toward) the tropics. This finding agrees with independent studies focused on European floods, which have noted enhanced moist transport from the ITCZ toward the Mediterranean region on time scales of about a week as important precursors of extreme precipitation.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-23
    Description: For assessing the impacts of wind farms on regional climate, wind farms may be represented in climate models by an increase in aerodynamic roughness length. Studies employing this method have found near-surface temperature changes of 1–2 K over wind farm areas. By contrast, mesoscale and large-eddy simulations (LES), which represent wind farms as elevated sinks of momentum, generally showed temperature changes of less than 0.5 K. This study directly compares the two methods of representing wind farms in simulations of a strong diurnal cycle. Nearly the opposite wake structure is seen between the two methods, both during the day and at night. The sensible heat fluxes are generally exaggerated in the enhanced roughness approach, leading to much greater changes in temperature. Frequently, the two methods display the opposite sign in temperature change. Coarse resolution moderates the sensible heat fluxes but does not significantly improve the near-surface temperatures or low-level wind speed deficit. Since wind farm impacts modeled by the elevated momentum sink approach are similar to those seen in observations and from LES, the authors conclude that the increased surface roughness approach is not an appropriate option to represent wind farms or explore their impacts.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-08-23
    Description: A comprehensive analysis of satellite datasets has estimated that the ice sheets of Greenland, West Antarctica, the Antarctic Peninsula, and East Antarctica experienced a net mass loss of −100 ± 92 Gt yr−1 over the period 1992–2000 and −298 ± 58 Gt yr−1 over the period 2000–11, representing an increase of −198 ± 109 Gt yr−1 between the two epochs. The authors demonstrate that the time rate of change of the degree-four zonal harmonic of Earth's gravitational potential provides an independent check on these mass balances that is less sensitive to uncertainties that have contaminated previous analyses of the degree-2 zonal harmonic [e.g., due to ongoing glacial isostatic adjustment (GIA), solid Earth body tides, and core–mantle coupling]. For the period 2000–11, the signal implied by the ice sheet mass flux cited above is (3.8 ± 0.6) × 10−11 yr−1, whereas the change in the harmonic across the two epochs is (2.3 ± 1.1) × 10−11 yr−1. In comparison, using satellite laser ranging (SLR) data, the authors estimate a GIA-corrected value of (3.8 ± 0.6) × 10−11 yr−1 for the epoch 2000–11 and a change across the two epochs of (5.3 ± 1.6) × 10−11 yr−1. The authors conclude that the former supports recent estimates of melting over the last decade, whereas the latter suggests either that estimated melt rates for the earlier epoch were too high or that the uncertainty associated with the SLR-based inference of during the earlier epoch is underestimated.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-06
    Description: An ocean–sea ice model reconstruction spanning the period 1990–2009 is used to initialize ensemble seasonal forecasts with the Centre National de Recherches Météorologiques Coupled Global Climate Model version 5.1 (CNRM-CM5.1) coupled atmosphere–ocean general circulation model. The aim of this study is to assess the skill of fully initialized September and March pan-Arctic sea ice forecasts in terms of climatology and interannual anomalies. The predictions are initialized using “full field initialization” of each component of the system. In spite of a drift due to radiative biases in the coupled model during the melt season, the full initialization of the sea ice cover on 1 May leads to skillful forecasts of the September sea ice extent (SIE) anomalies. The skill of the prediction is also significantly high when considering anomalies of the SIE relative to the long-term linear trend. It confirms that the anomaly of spring sea ice cover in itself plays a role in preconditioning a September SIE anomaly. The skill of predictions for March SIE initialized on 1 November is also encouraging, and it can be partly attributed to persistent features of the fall sea ice cover. The present study gives insight into the current ability of state-of-the-art coupled climate systems to perform operational seasonal forecasts of the Arctic sea ice cover up to 5 months in advance.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-09-09
    Description: Rainfall over northern Australia (NA) in austral summer is the largest water source of Australia. Previous studies have suggested a strong zonal-dipole trend pattern in austral summer rainfall since 1950, with rainfall increasing in northwest Australia (NWA) but decreasing in northeast Australia (NEA). The dynamics of rainfall increase in NWA was linked to sea surface temperature (SST) in the south Indian Ocean and the rainfall decrease in NEA was associated with SST in the northeast Indian Ocean. This study reports that, in contrast to a zonal-dipole trend pattern, a dominant wetting pattern over NA has recently been observed in the post-1979 satellite era. The recent NA rainfall increase also manifests as the first leading mode of summer rainfall variability over the Australian continent. Further investigation reveals that SST in the tropical western Pacific (TWP) has replaced the SST in the south and northeast Indian Ocean as the controlling factor responsible for the recent NA rainfall increase. Direct thermal forcing by increasing TWP SST gives rise to an anomalous Gill-type cyclone centered around NA, leading to anomalously high rainfall. As such, the increasing SST in the TWP induces over 50% of the observed rainfall wetting trend over NA. The increased rainfall in turn induces land surface cooling in NA. This mechanism can be confirmed with results obtained from sensitivity experiments of a numerical spectral atmospheric general circulation model. Thus, increasing SST in the TWP has contributed much of the recent summer rainfall increase and consequently the surface cooling over NA.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-09-09
    Description: Local air–sea interactions over the high sea surface temperature (SST) band along the Hawaiian Lee Countercurrent (HLCC) are examined with a focus on dynamical feedback of SST-induced wind stress to the ocean using the atmosphere–ocean coupled general circulation model (CGCM). A pair of ensemble CGCM simulations are compared to extract the air–sea interactions associated with HLCC: the control simulations and other simulations, the latter purposely eliminating influences of the high SST band on the sea surface flux computations in the CGCM. The comparison reveals that oceanic response to surface wind convergence and positive wind stress curl induced by the high SST band increases (decreases) the HLCC speed in the southern (northern) flank of the HLCC. The HLCC speed changes are driven by the Ekman suction associated with positive wind stress curl over the warm HLCC via the thermal wind balance. The HLCC speed increase is more significant than its decrease. This dynamical feedback is likely to be important to sustain the extension of the HLCC far to the west. The heat budget analysis confirms that advection of warm water from the west associated with this significant current speed increase plays a role in the southward shift of the HLCC axis. The dynamical feedback with the HLCC speed increase can potentially amplify the seasonal and interannual variations of HLCC.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-09-09
    Description: Extratropical cyclone track density, genesis frequency, deepening rate, and maximum intensity distributions over eastern North America and the western North Atlantic were analyzed for 15 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical period (1979–2004) and three future periods (2009–38, 2039–68, and 2069–98). The cyclones were identified using an automated tracking algorithm applied to sea level pressure every 6 h. The CMIP5 results for the historical period were evaluated using the Climate Forecast System Reanalysis (CFSR). The CMIP5 models were ranked given their track density, intensity, and overall performance for the historical period. It was found that six of the top seven CMIP5 models with the highest spatial resolution were ranked the best overall. These models had less underprediction of cyclone track density, more realistic distribution of intense cyclones along the U.S. East Coast, and more realistic cyclogenesis and deepening rates. The best seven models were used to determine projected future changes in cyclones, which included a 10%–30% decrease in cyclone track density and weakening of cyclones over the western Atlantic storm track, while in contrast there is a 10%–20% increase in cyclone track density over the eastern United States, including 10%–40% more intense (
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-09-09
    Description: The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-23
    Description: Future climate change projections for phase 5 of the Coupled Model Intercomparison Project (CMIP5) are presented for the Community Earth System Model version 1 that includes the Community Atmospheric Model version 5 [CESM1(CAM5)]. These results are compared to the Community Climate System Model, version 4 (CCSM4) and include simulations using the representative concentration pathway (RCP) mitigation scenarios, and extensions for those scenarios beyond 2100 to 2300. Equilibrium climate sensitivity of CESM1(CAM5) is 4.10°C, which is higher than the CCSM4 value of 3.20°C. The transient climate response is 2.33°C, compared to the CCSM4 value of 1.73°C. Thus, even though CESM1(CAM5) includes both the direct and indirect effects of aerosols (CCSM4 had only the direct effect), the overall climate system response including forcing and feedbacks is greater in CESM1(CAM5) compared to CCSM4. The Atlantic Ocean meridional overturning circulation (AMOC) in CESM1(CAM5) weakens considerably in the twenty-first century in all the RCP scenarios, and recovers more slowly in the lower forcing scenarios. The total aerosol optical depth (AOD) changes from ~0.12 in 2006 to ~0.10 in 2100, compared to a preindustrial 1850 value of 0.08, so there is less negative forcing (a net positive forcing) from that source during the twenty-first century. Consequently, the change from 2006 to 2100 in aerosol direct forcing in CESM1(CAM5) contributes to greater twenty-first century warming relative to CCSM4. There is greater Arctic warming and sea ice loss in CESM1(CAM5), with an ice-free summer Arctic occurring by about 2060 in RCP8.5 (2040s in September) as opposed to about 2100 in CCSM4 (2060s in September).
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-08-23
    Description: Twenty-first-century projections of Atlantic climate change are downscaled to explore the robustness of potential changes in hurricane activity. Multimodel ensembles using the phase 3 of the Coupled Model Intercomparison Project (CMIP3)/Special Report on Emissions Scenarios A1B (SRES A1B; late-twenty-first century) and phase 5 of the Coupled Model Intercomparison Project (CMIP5)/representative concentration pathway 4.5 (RCP4.5; early- and late-twenty-first century) scenarios are examined. Ten individual CMIP3 models are downscaled to assess the spread of results among the CMIP3 (but not the CMIP5) models. Downscaling simulations are compared for 18-km grid regional and 50-km grid global models. Storm cases from the regional model are further downscaled into the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model (9-km inner grid spacing, with ocean coupling) to simulate intense hurricanes at a finer resolution. A significant reduction in tropical storm frequency is projected for the CMIP3 (−27%), CMIP5-early (−20%) and CMIP5-late (−23%) ensembles and for 5 of the 10 individual CMIP3 models. Lifetime maximum hurricane intensity increases significantly in the high-resolution experiments—by 4%–6% for CMIP3 and CMIP5 ensembles. A significant increase (+87%) in the frequency of very intense (categories 4 and 5) hurricanes (winds ≥ 59 m s−1) is projected using CMIP3, but smaller, only marginally significant increases are projected (+45% and +39%) for the CMIP5-early and CMIP5-late scenarios. Hurricane rainfall rates increase robustly for the CMIP3 and CMIP5 scenarios. For the late-twenty-first century, this increase amounts to +20% to +30% in the model hurricane’s inner core, with a smaller increase (~10%) for averaging radii of 200 km or larger. The fractional increase in precipitation at large radii (200–400 km) approximates that expected from environmental water vapor content scaling, while increases for the inner core exceed this level.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-23
    Description: In contrast to earlier studies, the authors describe the climatological deep low pressure system that exists over the South Pacific sector of the Southern Ocean, referred to as the Amundsen–Bellingshausen Seas low (ABSL), in terms of its relative (rather than actual) central pressure by removing the background area-averaged mean sea level pressure (MSLP). Doing so removes much of the influence of large-scale variability across the ABSL sector region (e.g., due to the southern annular mode), allowing a clearer understanding of ABSL variability and its effect on the regional climate of West Antarctica. Using ECMWF Interim Re-Analysis (ERA-Interim) fields, the annual cycle of the relative central pressure of the ABSL for the period from 1979 to 2011 shows a minimum (maximum) during winter (summer), differing considerably from the earlier studies based on actual central pressure, which suggests a semiannual oscillation. The annual cycle of the longitudinal position of the ABSL is insensitive to the background pressure, and shows it shifting westward from ∼250° to ∼220°E between summer and winter, in agreement with earlier studies. The authors demonstrate that ABSL variability, and in particular its longitudinal position, play an important role in controlling the surface climate of West Antarctica and the surrounding ocean by quantifying its influence on key meteorological parameters. Examination of the ABSL annual cycle in 17 CMIP5 climate models run with historical forcing shows that the majority of them have definite biases, especially in terms of longitudinal position, and a correspondingly poor representation of West Antarctic climate.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-09-09
    Description: The frequencies of atmospheric blocking in both winter and summer and the changes in them from the twentieth to the twenty-first centuries as simulated in 12 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed. The representative concentration pathway 8.5 (RCP8.5) high emission scenario runs are used to represent the twenty-first century. The analysis is based on the wave-breaking methodology of Pelly and Hoskins. It differs from the Tibaldi and Molteni index in viewing equatorward cutoff lows and poleward blocking highs in equal manner as indicating a disruption to the westerlies. One-dimensional and two-dimensional diagnostics are applied to identify blocking of the midlatitude storm track and also at higher latitudes. Winter blocking frequency is found to be generally underestimated. The models give a decrease in the European blocking maximum in the twenty-first century, consistent with the results in other studies. There is a mean twenty-first-century winter poleward shift of high-latitude blocking but little agreement between the models on the details. In summer, Eurasian blocking is also underestimated in the models, whereas it is now too large over the high-latitude ocean basins. A decrease in European blocking frequency in the twenty-first-century model runs is again found. However, in summer there is a clear eastward shift of blocking over eastern Europe and western Russia, in a region close to the blocking that dominated the Russian summer of 2010. While summer blocking decreases in general, the poleward shift of the storm track into the region of frequent high-latitude blocking may mean that the incidence of storms being obstructed by blocks may actually increase.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-08-06
    Description: The Atlantic multidecadal oscillation (AMO) is characterized by the sea surface warming (cooling) of the entire North Atlantic during its warm (cold) phase. Both observations and most of the phase 5 of the Coupled Model Intercomparison Project (CMIP5) models also show that the warm (cold) phase of the AMO is associated with a surface warming (cooling) and a subsurface cooling (warming) in the tropical North Atlantic (TNA). It is further shown that the warm phase of the AMO corresponds to a strengthening of the Atlantic meridional overturning circulation (AMOC) and a weakening of the Atlantic subtropical cell (STC), which both induce an anomalous northward current in the TNA subsurface ocean. Because the mean meridional temperature gradient of the subsurface ocean is positive because of the temperature dome around 9°N, the advection by the anomalous northward current cools the TNA subsurface ocean during the warm phase of the AMO. The opposite is true during the cold phase of the AMO. It is concluded that the anticorrelated ocean temperature variation in the TNA associated with the AMO is caused by the meridional current variation induced by variability of the AMOC and STC, but the AMOC plays a more important role than the STC. Observations do not seem to show an obvious anticorrelated salinity relation between the TNA surface and subsurface oceans, but most of CMIP5 models simulate an out-of-phase salinity variation. Similar to the temperature variation, the mechanism is the salinity advection by the meridional current variation induced by the AMOC and STC associated with the AMO.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-09-09
    Description: The response over West Africa to uniform warming of the Atlantic Ocean is analyzed using idealized simulations with a regional climate model. With warming of 1 and 1.5 K, rainfall rates increase by 30%–50% over most of West Africa. With Atlantic warming of 2 K and higher, coastal precipitation increases but Sahel rainfall decreases substantially. This nonlinear response in Sahel rainfall is the focus of this analysis. Atlantic warming is accompanied by decreases in low-level geopotential heights in the Gulf of Guinea and in the large-scale meridional geopotential height gradient. This leads to easterly wind anomalies in the central Sahel. With Atlantic warming below 2 K, these easterly anomalies support moisture transport from the Gulf of Guinea and precipitation increases. With Atlantic warming over 2 K, the easterly anomalies reverse the westerly flow over the Sahel. The resulting dry air advection into the Sahel reduces precipitation. Increased low-level moisture provides moist static energy to initiate convection with Atlantic warming at 1.5 K and below, while decreased moisture and stable thermal profiles suppress convection with additional warming. In all simulations, the southerly monsoon flow onto the Guinean coast is maintained and precipitation in that region increases. The relevance of these results to the global warming problem is limited by the focus on Atlantic warming alone. However, confident prediction of climate change requires an understanding of the physical processes of change, and this paper contributes to that goal.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-08-06
    Description: A regional climate model with 90-km horizontal resolution on a large domain is used to predict and analyze precipitation changes over East Africa caused by greenhouse gas increases. A pair of six-member ensembles is used: one representing the late twentieth century and another the mid-twenty-first century under a midline emissions scenario. The twentieth-century simulation uses boundary conditions from reanalysis climatology, and these are modified for the mid-twenty-first-century simulation using output from coupled GCMs. The twentieth-century simulation reproduces the observed climate well. In eastern Ethiopia and Somalia, the boreal spring rains that begin in May are cut short in the mid-twenty-first-century simulation. The cause is an anomalous dry, anticyclonic flow that develops over the Arabian Peninsula and the northern Arabian Sea as mass shifts eastward near 20°N in response to strong warming over the Sahara. In Tanzania and southern Kenya, the boreal spring's long rains are reduced throughout the season in the future simulation. This is a secondary response to precipitation enhancement in the Congo basin. The boreal fall “short rains” season is lengthened in the twenty-first-century simulation in the southern Kenya and Tanzania region in association with a northeastward shift of the South Indian convergence zone.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-07-26
    Description: This study provides an overview of the state of the art of modeling SST teleconnections to Africa and begins to investigate the sources of error. Data are obtained from the Coupled Model Intercomparison Project (CMIP) archives, phases 3 and 5 (CMIP3 and CMIP5), using the “20C3M” and “historical” coupled model experiments. A systematic approach is adopted, with the scope narrowed to six large-scale regions of sub-Saharan Africa within which seasonal rainfall anomalies are reasonably coherent, along with six SST modes known to affect these regions. No significant nonstationarity of the strength of these 6 × 6 teleconnections is found in observations. The capability of models to represent each teleconnection is then assessed (whereby half the teleconnections have observed SST–rainfall correlations that differ significantly from zero). A few of these teleconnections are found to be relatively easy to model, while a few more pose substantial challenges to models and many others exhibit a wide variety of model skill. Furthermore, some models perform consistently better than others, with the best able to at least adequately simulate 80%–85% of the 36 teleconnections. No improvement is found between CMIP3 and CMIP5. Analysis of atmosphere-only simulations suggests that the coupled model teleconnection errors may arise primarily from errors in their SST climatology and variability, although errors in the atmospheric component of teleconnections also play a role. Last, no straightforward relationship is found between the quality of a model's teleconnection to Africa and its SST or rainfall biases or its resolution. Perhaps not surprisingly, the causes of these errors are complex, and will require considerable further investigation.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-07-26
    Description: The temperature contrast between the Northern and Southern Hemispheres—the interhemispheric temperature asymmetry (ITA)—is an emerging indicator of global climate change, potentially relevant to the Hadley circulation and tropical rainfall. The authors examine the ITA in historical observations and in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) simulations. The observed annual-mean ITA (north minus south) has varied within a 0.8°C range and features a significant positive trend since 1980. The CMIP multimodel ensembles simulate this trend, with a stronger and more realistic signal in CMIP5. Both ensembles project a continued increase in the ITA over the twenty-first century, well outside the twentieth-century range. The authors mainly attribute this increase to the uneven spatial impacts of greenhouse forcing, which result in amplified warming in the Arctic and northern landmasses. The CMIP5 specific-forcing simulations indicate that, before 1980, the greenhouse-forced ITA trend was primarily countered by anthropogenic aerosols. The authors also identify an abrupt decrease in the observed ITA in the late 1960s, which is generally not present in the CMIP simulations; it suggests that the observed drop was caused by internal variability. The difference in the strengths of the northern and southern Hadley cells covaries with the ITA in the CMIP5 simulations, in accordance with previous findings; the authors also find an association with the hemispheric asymmetry in tropical rainfall. These relationships imply a northward shift in tropical rainfall with increasing ITA in the twenty-first century, though this result is difficult to separate from the response to global-mean temperature change.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-08-06
    Description: El Niño–Southern Oscillation (ENSO) in the Pacific and the analogous Atlantic Niño mode are generated by processes involving coupled ocean–atmosphere interactions known as the Bjerknes feedback. It has been argued that the Atlantic Niño mode is more strongly damped than ENSO, which is presumed to be closer to neutrally stable. In this study the stability of ENSO and the Atlantic Niño mode is compared via an analysis of the Bjerknes stability index. This index is based on recharge oscillator theory and can be interpreted as the growth rate for coupled modes of ocean–atmosphere variability. Using observational data, an ocean reanalysis product, and output from an ocean general circulation model, the individual terms of the Bjerknes index are calculated for the first time for the Atlantic and then compared to results for the Pacific. Positive thermocline feedbacks in response to wind stress forcing favor anomaly growth in both basins, but they are twice as large in the Pacific compared to the Atlantic. Thermocline feedback is related to the fetch of the zonal winds, which is much greater in the equatorial Pacific than in the equatorial Atlantic due to larger basin size. Negative feedbacks are dominated by thermal damping of sea surface temperature anomalies in both basins. Overall, it is found that both ENSO and the Atlantic Niño mode are damped oscillators, but the Atlantic is more strongly damped than the Pacific primarily because of the weaker thermocline feedback.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-07-26
    Description: A novel tropical cyclone (TC) detection technique designed for coarse-resolution models is tested and evaluated. The detector, based on the Okubo–Weiss–Zeta parameter (OWZP), is applied to a selection of Coupled Model Intercomparison Project, phase 3 (CMIP3), models [Commonwealth Scientific and Industrial Research Organisation Mark, version 3.5 (CSIRO-Mk3.5); Max Planck Institute ECHAM5 (MPI-ECHAM5); and Geophysical Fluid Dynamics Laboratory Climate Model, versions 2.0 (GFDL CM2.0) and 2.1 (GFDL CM2.1)], and the combined performance of the model and detector is assessed by comparison with observed TC climatology for the period 1970–2000. Preliminary TC frequency projections are made using the three better-performing models by comparing the detected TC climatologies between the late twentieth and late twenty-first centuries. Very reasonable TC formation climatologies were detected in CSIRO-Mk3.5, MPI-ECHAM5, and GFDL CM2.1 for most basins, with the exception of the North Atlantic, where a large underdetection was present in all models. The GFDL CM2.0 model was excluded from the projection study because of a systematic underdetection in all basins. The above detection problems have been reported in other published studies, which suggests model rather than detector limitations are mostly responsible. This study demonstrates that coarse-resolution climate models do in general produce TC-like circulations with realistic geographical and seasonal distributions detectable by the OWZP TC detector. The preliminary projection results are consistent with the published literature, based on higher-resolution studies, of a global reduction of TCs between about 6% and 20%, with a much larger spread of results (about +20% to −50%) in individual basins.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-08-23
    Description: This study demonstrates that water vapor transport and precipitation are largely modulated by the intensity of the subtropical jet, transient eddies, and the location of wave breaking events during the different phases of ENSO. Clear differences are found in the potential vorticity (PV), meteorological fields, and trajectory pathways between the two different phases. Rossby wave breaking events have cyclonic and anticyclonic regimes, with associated differences in the frequency of occurrence and the dynamic response. During La Niña, there is a relatively weak subtropical jet allowing PV to intrude into lower latitudes over the western United States. This induces a large amount of moisture transport inland ahead of the PV intrusions, as well as northward transport to the west of a surface anticyclone. During El Niño, the subtropical jet is relatively strong and is associated with an enhanced cyclonic wave breaking. This is accompanied by a time-mean surface cyclone, which brings zonal moisture transport to the western United States. In both (El Niño and La Niña) phases, there is a high correlation (〉0.3–0.7) between upper-level PV at 250 hPa and precipitation over the west coast of the United States with a time lag of 0–1 days. Vertically integrated water vapor fluxes during El Niño are up to 70 kg m−1 s−1 larger than those during La Niña along the west coast of the United States. The zonal and meridional moist static energy flux resembles wave vapor transport patterns, suggesting that they are closely controlled by the large-scale flows and location of wave breaking events during the different phase of ENSO.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-09-09
    Description: A primitive equation model is used to investigate the role of the tropics in generating seasonal-mean anomalies in the extratropics. A nudging technique is applied to guide selected tropical regions toward 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and the National Centers for Environmental Prediction (NCEP)/Department of Energy Reanalysis (NCEP-2). The time-independent linear response to these tropical anomalies is calculated for extratropical basic states taken from reanalysis climatologies and also from the climatological states of Action de Recherche Petite Echelle Grande Echelle (ARPEGE) and Laboratoire de Météorologie Dynamique (LMDZ) general circulation model simulations. For summer case studies, time-independent linear solutions show that some seasonal anomalies can be attributed to linear wave propagation from the tropics, especially for lower extratropical latitudes. If nudging is applied to the anomaly part of the tropical flow, the linear response shows little dependence on the basic state. Regional tropical nudging experiments display a global extratropical response. The persistent European summer anomaly in 2003 is partly attributable to a linear response to both Central American and West African monsoon circulations. The African region also triggers a wave train along the Asian subtropical jet. The model is then used in “simple GCM” mode to obtain extratropical responses that include a contribution from transient eddies. Tropical nudging improves the simple GCM's stationary wave climatology, and transient eddy forcing can produce substantial seasonal anomalies at high latitudes with better correspondence to some observed cases, especially in the Western Hemisphere, with stronger communication between the Asian monsoon and North America.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-07-01
    Description: There is a long history of debate on the usefulness of climate model–based seasonal hydroclimatic forecasts as compared to ensemble streamflow prediction (ESP). In this study, the authors use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2), and its previous version, CFSv1, to investigate the value of climate models by conducting a set of 27-yr seasonal hydroclimatic hindcasts over the conterminous United States (CONUS). Through Bayesian downscaling, climate models have higher squared correlation R2 and smaller error than ESP for monthly precipitation, and the forecasts conditional on ENSO have further improvements over southern basins out to 4 months. Verification of streamflow forecasts over 1734 U.S. Geological Survey (USGS) gauges shows that CFSv2 has moderately smaller error than ESP, but all three approaches have limited added skill against climatology beyond 1 month because of overforecasting or underdispersion errors. Using a postprocessor, 60%–70% of probabilistic streamflow forecasts are more skillful than climatology. All three approaches have plausible predictions of soil moisture drought frequency over the central United States out to 6 months, and climate models provide better results over the central and eastern United States. The R2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur in different seasons for different basins. The R2 of drought severity accumulated over CONUS is higher during winter, and climate models present added value, especially at long leads. This study indicates that climate models can provide better seasonal hydroclimatic forecasts than ESP through appropriate downscaling procedures, but significant improvements are dependent on the variables, seasons, and regions.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-07-01
    Description: Despite their adverse impacts, definitions and measurements of heat waves are ambiguous and inconsistent, generally being endemic to only the group affected, or the respective study reporting the analysis. The present study addresses this issue by employing a set of three heat wave definitions, derived from surveying heat-related indices in the climate science literature. The definitions include three or more consecutive days above one of the following: the 90th percentile for maximum temperature, the 90th percentile for minimum temperature, and positive extreme heat factor (EHF) conditions. Additionally, each index is studied using a multiaspect framework measuring heat wave number, duration, participating days, and the peak and mean magnitudes. Observed climatologies and trends computed by Sen's Kendall slope estimator are presented for the Australian continent for two time periods (1951–2008 and 1971–2008). Trends in all aspects and definitions are smaller in magnitude but more significant for 1951–2008 than for 1971–2008. Considerable similarities exist in trends of the yearly number of days participating in a heat wave and yearly heat wave frequency, suggesting that the number of available heat wave days drives the number of events. Larger trends in the hottest part of a heat wave suggest that heat wave intensity is increasing faster than the mean magnitude. Although the direct results of this study cannot be inferred for other regions, the methodology has been designed as such that it is widely applicable. Furthermore, it includes a range of definitions that may be useful for a wide range of systems impacted by heat waves.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-07-12
    Description: Using five climate model simulations of the response to an abrupt quadrupling of CO2, the authors perform the first simultaneous model intercomparison of cloud feedbacks and rapid radiative adjustments with cloud masking effects removed, partitioned among changes in cloud types and gross cloud properties. Upon CO2 quadrupling, clouds exhibit a rapid reduction in fractional coverage, cloud-top pressure, and optical depth, with each contributing equally to a 1.1 W m−2 net cloud radiative adjustment, primarily from shortwave radiation. Rapid reductions in midlevel clouds and optically thick clouds are important in reducing planetary albedo in every model. As the planet warms, clouds become fewer, higher, and thicker, and global mean net cloud feedback is positive in all but one model and results primarily from increased trapping of longwave radiation. As was true for earlier models, high cloud changes are the largest contributor to intermodel spread in longwave and shortwave cloud feedbacks, but low cloud changes are the largest contributor to the mean and spread in net cloud feedback. The importance of the negative optical depth feedback relative to the amount feedback at high latitudes is even more marked than in earlier models. The authors show that the negative longwave cloud adjustment inferred in previous studies is primarily caused by a 1.3 W m−2 cloud masking of CO2 forcing. Properly accounting for cloud masking increases net cloud feedback by 0.3 W m−2 K−1, whereas accounting for rapid adjustments reduces by 0.14 W m−2 K−1 the ensemble mean net cloud feedback through a combination of smaller positive cloud amount and altitude feedbacks and larger negative optical depth feedbacks.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-07-12
    Description: Previous evaluations of model simulations of the cloud and water vapor feedbacks in response to El Niño warming have singled out two common biases in models from phase 3 of the Coupled Model Intercomparison Project (CMIP3): an underestimate of the negative feedback from the shortwave cloud radiative forcing (SWCRF) and an overestimate of the positive feedback from the greenhouse effect of water vapor. Here, the authors check whether these two biases are alleviated in the CMIP5 models. While encouraging improvements are found, particularly in the simulation of the negative SWCRF feedback, the biases in the simulation of these two feedbacks remain prevalent and significant. It is shown that bias in the SWCRF feedback correlates well with biases in the corresponding feedbacks from precipitation, large-scale circulation, and longwave radiative forcing of clouds (LWCRF). By dividing CMIP5 models into two categories—high score models (HSM) and low score models (LSM)—based on their individual skills of simulating the SWCRF feedback, the authors further find that ocean–atmosphere coupling generally lowers the score of the simulated feedbacks of water vapor and clouds but that the LSM is more affected by the coupling than the HSM. They also find that the SWCRF feedback is simulated better in the models that have a more realistic zonal extent of the equatorial cold tongue, suggesting that the continuing existence of an excessive cold tongue is a key factor behind the persistence of the feedback biases in models.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-07-12
    Description: The Community Atmosphere Model, version 4 (CAM4), was released as part of the Community Climate System Model, version 4 (CCSM4). The finite volume (FV) dynamical core is now the default because of its superior transport and conservation properties. Deep convection parameterization changes include a dilute plume calculation of convective available potential energy (CAPE) and the introduction of convective momentum transport (CMT). An additional cloud fraction calculation is now performed following macrophysical state updates to provide improved thermodynamic consistency. A freeze-drying modification is further made to the cloud fraction calculation in very dry environments (e.g., the Arctic), where cloud fraction and cloud water values were often inconsistent in CAM3. In CAM4 the FV dynamical core further degrades the excessive trade-wind simulation, but reduces zonal stress errors at higher latitudes. Plume dilution alleviates much of the midtropospheric tropical dry biases and reduces the persistent monsoon precipitation biases over the Arabian Peninsula and the southern Indian Ocean. CMT reduces much of the excessive trade-wind biases in eastern ocean basins. CAM4 shows a global reduction in cloud fraction compared to CAM3, primarily as a result of the freeze-drying and improved cloud fraction equilibrium modifications. Regional climate feature improvements include the propagation of stationary waves from the Pacific into midlatitudes and the seasonal frequency of Northern Hemisphere blocking events. A 1° versus 2° horizontal resolution of the FV dynamical core exhibits superior improvements in regional climate features of precipitation and surface stress. Improvements in the fully coupled mean climate between CAM3 and CAM4 are also more substantial than in forced sea surface temperature (SST) simulations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-07-01
    Description: The cloud feedback in response to short-term climate variations is estimated from cloud measurements combined with offline radiative transfer calculations. The cloud measurements are made by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite and cover the period 2000–10. Low clouds provide a strong negative cloud feedback, mainly because of their impact in the shortwave (SW) portion of the spectrum. Midlevel clouds provide a positive net cloud feedback that is a combination of a positive SW feedback partially canceled by a negative feedback in the longwave (LW). High clouds have only a small impact on the net cloud feedback because of a close cancellation between large LW and SW cloud feedbacks. Segregating the clouds by optical depth, it is found that the net cloud feedback is set by a positive cloud feedback due to reductions in the thickest clouds (mainly in the SW) and a cancelling negative feedback from increases in clouds with moderate optical depths (also mainly in the SW). The global average SW, LW, and net cloud feedbacks are +0.30 ±1.10, −0.46 ±0.74, and −0.16 ±0.83 W m−2 K−1, respectively. The SW feedback is consistent with previous work; the MODIS LW feedback is lower than previous calculations and there are reasons to suspect it may be biased low. Finally, it is shown that the apparently small control that global mean surface temperature exerts on clouds, which leads to the large uncertainty in the short-term cloud feedback, arises from statistically significant but offsetting relationships between individual cloud types and global mean surface temperature.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-07-01
    Description: Confident regional-scale climate change predictions for the Sahel are needed to support adaptation planning. State-of-the-art regional climate model (RCM) simulations at 90- and 30-km resolutions are run and analyzed along with output from five coupled atmosphere–ocean GCMs (AOGCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to predict how the Sahel summer surface temperature, precipitation, and surface moisture are likely to change at the mid- and late-twenty-first century due to increased atmospheric CO2 concentrations under the representative concentration pathway 8.5 (RCP8.5) emission scenario and evaluate confidence in such projections. Future lateral boundary conditions are derived from CMIP5 AOGCMs. It is shown that the regional climate model can realistically simulate the current summer evolution of the West African monsoon climate including the onset and demise of the Sahel wet season, a necessary but not sufficient condition for confident prediction. RCM and AOGCM projections indicate the likelihood for increased surface air temperatures over this century, with Sahara and Sahel temperature increases of 2–3.5 K by midcentury, and 3–6 K by late century. Summer rainfall and surface moisture are also projected to increase over most of the Sahel. This is primarily associated with an increase in rainfall intensity and not a lengthening of the wet season. Pinpointing exactly when the rainfall and surface moisture increase will first commence and by exactly what magnitude is less certain as these predictions appear to be model dependent. Models that simulate stronger warming over the Sahara are associated with larger and earlier rainfall increases over the Sahel due to an intensification of the low-level West African westerly jet, and vice versa.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-07-12
    Description: Many global climate models (GCMs) have trouble simulating southern annular mode (SAM) variability correctly, particularly in the Southern Hemisphere summer season where it tends to be too persistent. In this two-part study, a suite of experiments with the Canadian Middle Atmosphere Model (CMAM) is analyzed to improve the understanding of the dynamics of SAM variability and its deficiencies in GCMs. Here, an examination of the eddy–mean flow feedbacks is presented by quantification of the feedback strength as a function of zonal scale and season using a new methodology that accounts for intraseasonal forcing of the SAM. In the observed atmosphere, in the summer season, a strong negative feedback by planetary-scale waves, in particular zonal wavenumber 3, is found in a localized region in the southwest Pacific. It cancels a large proportion of the positive feedback by synoptic- and smaller-scale eddies in the zonal mean, resulting in a very weak overall eddy feedback on the SAM. CMAM is deficient in this negative feedback by planetary-scale waves, making a substantial contribution to its bias in summertime SAM persistence. Furthermore, this bias is not alleviated by artificially improving the climatological circulation, suggesting that climatological circulation biases are not the cause of the planetary wave feedback deficiency in the model. Analysis of the summertime eddy feedbacks in the models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) confirms that this is indeed a common problem among GCMs, suggesting that understanding this planetary wave feedback and the reason for its deficiency in GCMs is key to improving the fidelity of simulated SAM variability in the summer season.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-07-01
    Description: Summer and winter daily heavy precipitation events (events above the 97.5th percentile) are analyzed in regional climate simulations with 36-, 12-, and 4-km horizontal grid spacing over the headwaters of the Colorado River. Multiscale evaluations are useful to understand differences across horizontal scales and to evaluate the effects of upscaling finescale processes to coarser-scale features associated with precipitating systems. Only the 4-km model is able to correctly simulate precipitation totals of heavy summertime events. For winter events, results from the 4- and 12-km grid models are similar and outperform the 36-km simulation. The main advantages of the 4-km simulation are the improved spatial mesoscale patterns of heavy precipitation (below ~100 km). However, the 4-km simulation also slightly improves larger-scale patterns of heavy precipitation.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-07-01
    Description: The response of the Northern Hemisphere summer anticyclones to a change in the timing of perihelion is investigated using the GFDL Climate Model version 2.1 (CM2.1). The orbital forcing consists of changes in the seasonal cycle of the top-of-atmosphere insolation as the perihelion shifts from the Northern Hemisphere winter to the Northern Hemisphere summer solstice. The North Pacific summer anticyclone experiences a large strengthening as well as a northward and westward expansion. The North Atlantic subtropical high experiences a smaller change that consists of a slight westward expansion but little change in strength. Experiments with a primitive equation atmospheric model show that these changes represent the circulation response to changes in the diabatic heating, both local and remotely. The remote diabatic forcing is associated with changes in the Southeast Asian and African summer monsoons, and the local forcing is dominated by a combined effect of a change in low clouds and local precipitation.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-07-12
    Description: This paper examines how variations in two mechanisms, upstream seeding and jet-core strength, relate to storminess within the cold season (October–April) Pacific storm track. It is found that about 17% of observed storminess covaries with the strength of the upstream wave source, and the relationship is robust throughout the cold season and for both the Pacific and Atlantic basins. Further analyses of the intraseasonal variability in the strength and structure of the wintertime [December–February (DJF)] Pacific jet stream draw upon both Eulerian-variance and feature-tracking statistics to diagnose why winter months with a strong-core jet stream have weaker storminess than those with a weak-core jet stream. Contrary to expectations, it is shown that the basic spatial patterns actually conform to a simple linear picture: regions with a weaker jet have weaker storminess. The overall decrease in storminess is most strongly linked to the weaker amplitude of individual storms in strong-core months. Previously proposed mechanisms are evaluated in the context of these new results. Last, this analysis provides further evidence that the midwinter suppression in storminess over the North Pacific Ocean is primarily due to a notable lack of storminess upstream of the Pacific storm track in the heart of winter.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-07-12
    Description: The impact of strong tropical volcanic eruptions (SVEs) on the El Niño–Southern Oscillation (ENSO) and its phase dependency is investigated using a coupled general circulation model (CGCM). This paper investigates the response of ENSO to an idealized SVE forcing, producing a peak perturbation of global-mean surface shortwave radiation larger than −6.5 W m−2. Radiative forcing due to volcanic aerosols injected into the stratosphere induces tropical surface cooling around the volcanic forcing peak. Identical-twin forecast experiments of an ENSO-neutral year in response to an SVE forcing show an El Niño–like warming lagging one year behind the peak forcing. In addition to a reduced role of the mean subsurface water upwelling (known as the dynamical thermostat mechanism), the rapid land surface cooling around the Maritime Continent weakens the equatorial Walker circulation, contributing to the positive zonal gradient of sea surface temperature (SST) and precipitation anomalies over the equatorial Pacific. Since the warm and cold phases of ENSO exhibit significant asymmetry in their transition and duration, the impact of a SVE forcing on El Niño and La Niña is also investigated. In the warm phase of ENSO, the prediction skill of the SVE-forced experiments rapidly drops approximately six months after the volcanic peak. Since the SVE significantly facilitates the duration of El Niño, the following transition from warm to cold ENSO is disrupted. The impact of SVE forcing on La Niña is, however, relatively weak. These results imply that the intensity of a dynamical thermostat-like response to a SVE could be dependent on the phase of ENSO.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-07-12
    Description: The present study focuses on diagnosing the intermodel variability of nonzonally averaged NH winter jet stream portrayal in 17 global climate models (GCMs) from phase three of the Coupled Model Intercomparison Project (CMIP3). Relative to the reanalysis, the ensemble-mean 300-hPa Atlantic jet is too zonally extended and located too far equatorward in GCMs. The Pacific jet varies significantly between modeling groups, with large biases in the vicinity of the jet exit region that cancel in the ensemble mean. After seeking relationships between twentieth-century model wind biases and 1) the internal modes of jet variability or 2) tropical sea surface temperatures (SSTs), it is found that biases in upper-level winds are strongly related to an ENSO-like pattern in winter-mean tropical Pacific Ocean SST biases. The spatial structure of the leading modes of variability of the upper-level jet in the twentieth century is found to be accurately modeled in all 17 GCMs. Also, it is shown that Pacific model biases in the longitude of EOFs 1 and 2 are strongly linked to the modeled longitude of the Pacific jet exit, indicating that the improved characterization of the mean state of the Pacific jet may positively impact the modeled variability. This work suggests that improvements in model portrayal of the tropical Pacific mean state may significantly advance the portrayal of the mean state of the Pacific and Atlantic jets, which will consequently improve the modeled jet stream variability in the Pacific. To complement these findings, a companion paper examines the twenty-first-century GCM projections of the nonzonally averaged NH jet streams.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-07-12
    Description: This study reexamines how the Tibetan Plateau (TP) modulates the annual variation of atmospheric circulation and storm-track activity based on the Meteorological Research Institute's atmosphere–ocean coupled model experiments with a progressive TP uplift from 0% to 100% of the present height. Three major roles of the TP on atmospheric circulation and storm-track activity are identified. First, consistent with a previous finding, the TP tends to intensify the upper-level jet and enhance baroclinicity in the North Pacific Ocean but significantly weaken storm-track activity over the TP, East Asia, and the western North Pacific during the cold season. Second, the TP amplifies stationary waves that are closely linked to transient eddies. In particular, the TP enhances the Siberian high and the Aleutian low, which together contribute to the strengthening of the East Asian winter monsoon circulation and the weakening of storm-track activity. Third, the TP significantly modulates the subseasonal variability of the Pacific storm-track (PST) activity. In particular, the TP tends to suppress PST activity during midwinter despite the fact that it strengthens baroclinicity along the Pacific jet. The midwinter suppression of PST activity, which is well reproduced in a control run with a realistic TP, gradually disappears as the TP height decreases. Major factors for the midwinter suppression of the PST associated with the TP include the 1) destructive effect of an excessively strong jet leading to an inefficiency of barotropic energy conversion, 2) reduction of baroclinicity over the northern part of the TP, and 3) subseasonally varying SST change and resulting moist static energy.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-07-12
    Description: The anthropogenic climate change impacts on the eddy–jet system include an intensified midlatitude jet stream and an elevated tropopause, as well as a poleward-shifted jet. While both responses are evident in phase 3 of the Coupled Model Intercomparison Project (CMIP3) ensemble mean twenty-first-century projections, uncertainty in the poleward shift response is large enough that even the sign of the shift is not consistent among all models, especially in the Northern Hemisphere. The present analysis finds that twenty-first-century projections of the ensemble mean zonal wind change at 300 hPa predict a weakening and poleward expansion of the Pacific jet and an overall expansion of the Atlantic jet. In contrast with the direct zonal mean climate change signal of increasing midlatitude upper-level winds, zonal winds are projected to decrease in the core of the Pacific and Atlantic jets, with increasing zonal winds located primarily in the jet exit regions and the meridional flanks of the jets. Uncertainties in SST changes from the twentieth century to the twenty-first century between models are shown to impact modeled Northern Hemisphere jet stream changes. In particular, El Niño–Southern Oscillation–like mean winter SST changes explain 30% of intermodel variance of midlatitude zonal wind compared to the 8% explained by the domain-averaged warming SST signal. This suggests that a reduction of uncertainty in the tropical Pacific SST response to global warming will significantly reduce uncertainty in the Northern Hemisphere zonal wind response to climate change.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-05-31
    Description: An ensemble of simulations from different versions of the Community Atmosphere Model in the Community Earth System Model (CESM) is used to investigate the processes responsible for the intermodel spread in climate sensitivity. In the CESM simulations, the climate sensitivity spread is primarily explained by shortwave cloud feedbacks on the equatorward flank of the midlatitude storm tracks. Shortwave cloud feedbacks have been found to explain climate sensitivity spread in previous studies, but the location of feedback differences was in the subtropics rather than in the storm tracks as identified in CESM. The cloud-feedback relationships are slightly stronger in the winter hemisphere. The spread in climate sensitivity in this study is related both to the cloud-base state and to the cloud feedbacks. Simulated climate sensitivity is correlated with cloud-fraction changes on the equatorward side of the storm tracks, cloud condensate in the storm tracks, and cloud microphysical state on the poleward side of the storm tracks. Changes in the extent and water content of stratiform clouds (that make up cloud feedback) are regulated by the base-state vertical velocity, humidity, and deep convective mass fluxes. Within the storm tracks, the cloud-base state affects the cloud response to CO2-induced temperature changes and alters the cloud feedbacks, contributing to climate sensitivity spread within the CESM ensemble.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-05-31
    Description: Impacts of tropical temperature changes in the upper troposphere (UT) and the tropical tropopause layer (TTL) on tropical cyclone (TC) activity are explored. UT and lower TTL cooling both lead to an overall increase in potential intensity (PI), while temperature changes at 70 hPa and higher have negligible effect. Idealized experiments with a high-resolution global model show that lower temperatures in the UT are associated with increases in global and North Atlantic TC frequency, but modeled TC frequency changes are not significantly affected by TTL temperature changes nor do they scale directly with PI. Future projections of hurricane activity have been made with models that simulate the recent upward Atlantic TC trends while assuming or simulating very different tropical temperature trends. Recent Atlantic TC trends have been simulated by (i) high-resolution global models with nearly moist-adiabatic warming profiles and (ii) regional TC downscaling systems that impose the very strong UT and TTL trends of the NCEP–NCAR reanalysis, an outlier among observational estimates. The impact of these differences in temperature trends on TC activity is comparable to observed TC changes, affecting assessments of the connection between hurricanes and climate. Therefore, understanding the character of and mechanisms behind changes in UT and TTL temperature is important to understanding past and projecting future TC activity changes. The UT and TTL temperature trends in the NCEP–NCAR reanalysis are unlikely to be accurate and likely drive spuriously positive TC and PI trends and an inflated connection between absolute surface temperature warming and TC activity increases.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-07-12
    Description: A linear Markov model has been developed to predict the short-term climate variability of the East Asian monsoon system, with emphasis on precipitation variability. Precipitation, sea level pressure, zonal and meridional winds at 850 mb, along with sea surface temperature and soil moisture, were chosen to define the state of the East Asian monsoon system, and the multivariate empirical orthogonal functions of these variables were used to construct the statistical Markov model. The forecast skill of the model was evaluated in a cross-validated fashion and a series of sensitivity experiments were conducted to further validate the model. In both hindcast and forecast experiments, the model showed considerable skill in predicting the precipitation anomaly a few months in advance, especially in boreal winter and spring. The prediction in boreal summer was relatively poor, though the model performance was better in an ENSO decaying summer than in an ENSO developing summer. Also, the prediction skill was better over the ocean than the land. The model's forecast ability is attributed to the domination of the East Asian monsoon climate variability by a few distinctive modes in the coupled atmosphere–ocean–land system, to the strong influence of ENSO on these modes, and to the Markov model's capability to capture these modes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-07-12
    Description: The suitability of a linear inverse model (LIM) as a benchmark for decadal surface temperature forecast skill is demonstrated. Constructed from the observed simultaneous and 1-yr lag covariability statistics of annually averaged sea surface temperature (SST) and surface (2 m) land temperature global anomalies during 1901–2009, the LIM has hindcast skill for leads of 2–5 yr and 6–9 yr comparable to and sometimes even better than skill of the phase 5 of the Coupled Model Intercomparison Project (CMIP5) model hindcasts initialized annually over the period 1960–2000 and has skill far better than damped persistence (e.g., a local univariate AR1 process). Over the entire post-1901 record, the LIM skill pattern is similar but has reduced amplitude. Pronounced similarity in geographical variations of skill between LIM and CMIP5 hindcasts suggests similarity in their sources of skill as well, supporting additional evaluation of LIM predictability. For forecast leads above 1–2 yr, LIM skill almost entirely results from three nonorthogonal patterns: one corresponding to the secular trend and two more, each with about 10-yr decorrelation time scales but no trend, that represent most of the predictable portions of the Atlantic multidecadal oscillation (AMO) and Pacific decadal oscillation (PDO) indices, respectively. As found in previous studies, the AMO-related pattern also contributes to multidecadal variations in global mean temperature, and the PDO-related pattern has maximum amplitude in the west Pacific and represents the residual after both interannual and decadal ENSO variability are removed from the PDO time series. These results suggest that current coupled model decadal forecasts may not yet have much skill beyond that captured by multivariate, predictably linear dynamics.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-07-12
    Description: The intraseasonal oscillations (ISOs) of southern China spring rainfall (SCSR) are examined based on daily rain gauge rainfall data and NCEP/Department of Energy Reanalysis 2 (NCEP-2) products for the period 1980–2008. The objective of this study is to reveal the structure and propagation of the dominant ISO of SCSR as well as its driving mechanisms, thereby gaining an understanding of the causes of extreme wet and dry SCSR. The EOF analysis and power spectrum analysis show that the 10–20-day oscillation is a predominant ISO of SCSR in most years. Composite analyses and wave-activity propagation diagnosis demonstrate that the 10–20-day oscillation of SCSR is characterized by an alternate occurrence of a huge anomalous anticyclone (cyclone) encircling the Tibetan Plateau in the lower troposphere, with anomalous low-level northeasterly (southwesterly) winds prevailing over southern China, producing lower-tropospheric divergence (convergence). In the middle and upper troposphere, the oscillation appears as a southeastward propagating coherent wave train made up of a series of anomalous cyclones and anticyclones, which are aligned in a northwest–southeast direction. This whole wave train also drifts eastward, with strong upper-tropospheric convergence (divergence) alternately superimposed over the lower-tropospheric divergence (convergence) within and south of the Yangtze basin, resulting in deficient (excessive) rainfall in southern China. The thermal structure of the 10–20-day ISO of SCSR and its association with the mechanical–thermal forcing of the Tibetan Plateau are also explored.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-07-12
    Description: The first global objective climatology of tropical plumes (TPs), obtained from a novel algorithm based on gridded 10.8-μm brightness temperatures Tb, is presented for 1983–2006. TPs are defined as continuous cloud bands (〉2000 km) crossing 15°N or 15°S with Tb anomalies of less than −20 K and a lifetime of at least 3 h. A minimum length-to-width ratio of 3 filters out elongated features. Numbers of identified TPs are sensitive to the chosen thresholds but not their geographical distribution and seasonal cycle. TPs are an important indicator of tropical–extratropical interactions with impacts on radiation and moisture. TP occurrence during boreal winter is largely confined to oceanic regions with main maxima over the South Pacific and South Atlantic as well as the eastern North Atlantic and Pacific Oceans. The geographical distribution during boreal summer is similar, but with lower frequencies, except for monsoon-influenced regions. Interannual variations over the Indo-Pacific region are strongly related to El Niño. TPs often develop downstream of extratropical upper-level troughs propagating into low latitudes, particularly over the wintertime eastern North Pacific and North Atlantic, but also in regions where mean upper-level easterlies do not generally favor equatorward Rossby wave propagation. Synoptic-scale variations in the quasi-permanent cloud bands associated with the South Pacific and South Atlantic convergence zones frequently produce TP-like anomalies, which are climatologically associated with downstream upper-level troughs. Some regions also feature TPs associated with mesoscale tropical disturbances. The new TP algorithm will serve as a basis for more in-depth studies in the future.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...