ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Meteorological Society
  • 2015-2019
  • 2005-2009  (1.950)
  • 2009  (1.950)
Sammlung
Erscheinungszeitraum
  • 2015-2019
  • 2005-2009  (1.950)
Jahr
  • 1
    Publikationsdatum: 2009-12-15
    Beschreibung: A global atmospheric model with roughly 50-km horizontal grid spacing is used to simulate the interannual variability of tropical cyclones using observed sea surface temperatures (SSTs) as the lower boundary condition. The model’s convective parameterization is based on a closure for shallow convection, with much of the deep convection allowed to occur on resolved scales. Four realizations of the period 1981–2005 are generated. The correlation of yearly Atlantic hurricane counts with observations is greater than 0.8 when the model is averaged over the four realizations, supporting the view that the random part of this annual Atlantic hurricane frequency (the part not predictable given the SSTs) is relatively small (
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2009-11-01
    Beschreibung: Winter sea ice dramatically cools the Arctic climate during the coldest months of the year and may have remote effects on global climate as well. Accurate forecasting of winter sea ice has significant social and economic benefits. Such forecasting requires the identification and understanding of all of the feedbacks that can affect sea ice. A convective cloud feedback has recently been proposed in the context of explaining equable climates, for example, the climate of the Eocene, which might be important for determining future winter sea ice. In this feedback, CO2-initiated warming leads to sea ice reduction, which allows increased heat and moisture fluxes from the ocean surface, which in turn destabilizes the atmosphere and leads to atmospheric convection. This atmospheric convection produces optically thick convective clouds and increases high-altitude moisture levels, both of which trap outgoing longwave radiation and therefore result in further warming and sea ice loss. Here it is shown that this convective cloud feedback is active at high CO2 during polar night in the coupled ocean–sea ice–land–atmosphere global climate models used for the 1% yr−1 CO2 increase to the quadrupling (1120 ppm) scenario of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. At quadrupled CO2, model forecasts of maximum seasonal (March) sea ice volume are found to be correlated with polar winter cloud radiative forcing, which the convective cloud feedback increases. In contrast, sea ice volume is entirely uncorrelated with model global climate sensitivity. It is then shown that the convective cloud feedback plays an essential role in the elimination of March sea ice at quadrupled CO2 in NCAR’s Community Climate System Model (CCSM), one of the IPCC models that loses sea ice year-round at this CO2 concentration. A new method is developed to disable the convective cloud feedback in the Community Atmosphere Model (CAM), the atmospheric component of CCSM, and to show that March sea ice cannot be eliminated in CCSM at CO2 = 1120 ppm without the aide of the convective cloud feedback.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2009-11-01
    Beschreibung: Tide gauge data are used to estimate trends in global sea level for the period from 1955 to 2007. Linear trends over 15-yr segments are computed for each tide gauge record, averaged over latitude bands, and combined to form an area-weighted global mean trend. The uncertainty of the global trend is specified as a sampling error plus a random vertical land motion component, but land motion corrections do not change the results. The average global sea level trend for the time segments centered on 1962–90 is 1.5 ± 0.5 mm yr−1 (standard error), in agreement with previous estimates of late twentieth-century sea level rise. After 1990, the global trend increases to the most recent rate of 3.2 ± 0.4 mm yr−1, matching estimates obtained from satellite altimetry. The acceleration is distinct from decadal variations in global sea level that have been reported in previous studies. Increased rates in the tropical and southern oceans primarily account for the acceleration. The timing of the global acceleration corresponds to similar sea level trend changes associated with upper ocean heat content and ice melt.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2009-11-01
    Beschreibung: Extremes of precipitation are examined in a wide range of climates simulated with an idealized aquaplanet GCM. The high percentiles of daily precipitation increase as the climate warms. Their fractional rate of increase with global-mean surface temperature is generally similar to or greater than that of mean precipitation, but it is less than that of atmospheric (column) water vapor content. A simple scaling is introduced for precipitation extremes that accounts for their behavior by including the effects of changes in the moist-adiabatic lapse rate, the circulation strength, and the temperature when the extreme events occur. The effects of changes in the moist-adiabatic lapse rate and circulation strength on precipitation extremes are important globally, whereas the difference in the mean temperature and the temperature at which precipitation extremes occur is important only at middle to high latitudes.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2009-11-01
    Beschreibung: The too diverse representation of ENSO in a coupled GCM limits one’s ability to describe future change of its properties. Several studies pointed to the key role of atmosphere feedbacks in contributing to this diversity. These feedbacks are analyzed here in two simulations of a coupled GCM that differ only by the parameterization of deep atmospheric convection and the associated clouds. Using the Kerry–Emanuel (KE) scheme in the L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4; KE simulation), ENSO has about the right amplitude, whereas it is almost suppressed when using the Tiedke (TI) scheme. Quantifying both the dynamical Bjerknes feedback and the heat flux feedback in KE, TI, and the corresponding Atmospheric Model Intercomparison Project (AMIP) atmosphere-only simulations, it is shown that the suppression of ENSO in TI is due to a doubling of the damping via heat flux feedback. Because the Bjerknes positive feedback is weak in both simulations, the KE simulation exhibits the right ENSO amplitude owing to an error compensation between a too weak heat flux feedback and a too weak Bjerknes feedback. In TI, the heat flux feedback strength is closer to estimates from observations and reanalysis, leading to ENSO suppression. The shortwave heat flux and, to a lesser extent, the latent heat flux feedbacks are the dominant contributors to the change between TI and KE. The shortwave heat flux feedback differences are traced back to a modified distribution of the large-scale regimes of deep convection (negative feedback) and subsidence (positive feedback) in the east Pacific. These are further associated with the model systematic errors. It is argued that a systematic and detailed evaluation of atmosphere feedbacks during ENSO is a necessary step to fully understand its simulation in coupled GCMs.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2009-11-15
    Beschreibung: The simulation of atmospheric–land–ocean CO2 exchange for the 1850–2000 period offers the possibility of testing and calibrating the carbon budget in earth system models by comparing the simulated changes in atmospheric CO2 concentration and in land and ocean uptake with observation-based information. In particular, some of the uncertainties associated with the treatment of land use change (LUC) and the role of down regulation in affecting the strength of CO2 fertilization for terrestrial photosynthesis are assessed using the Canadian Centre for Climate Modelling and Analysis Earth System Model (CanESM1). LUC emissions may be specified as an external source of CO2 or calculated interactively based on estimated changes in crop area. The evidence for photosynthetic down regulation is reviewed and an empirically based representation is implemented and tested in the model. Four fully coupled simulations are performed: with and without terrestrial photosynthesis down regulation and with interactively determined or specified LUC emissions. Simulations without terrestrial photosynthesis down regulation yield 15–20 ppm lower atmospheric CO2 by the end of the twentieth century, compared to observations, regardless of the LUC approach used because of higher carbon uptake by land. Implementation of down regulation brings simulated values of atmospheric CO2 and land and ocean carbon uptake closer to observation-based values. The use of specified LUC emissions yields a large source in the tropics during the 1981–2000 period, which is inconsistent with studies suggesting the tropics to be near-neutral or small carbon sinks. The annual cycle of simulated global averaged CO2, dominated by the Northern Hemisphere terrestrial photosynthesis and respiration cycles, is reasonably well reproduced, as is the latitudinal distribution of CO2 and the dependence of interhemispheric CO2 gradient on fossil fuel emissions. The empirical approach used here offers a reasonable method of implementing down regulation in coupled carbon–climate models in the absence of a more explicit biogeochemical representation.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2009-11-15
    Beschreibung: Composites based on observations and model outputs from the Climate Variability and Predictability (CLIVAR) drought experiments were used to examine the impact of El Niño–Southern Oscillation (ENSO) and the Atlantic multidecadal oscillation (AMO) on drought over the United States. Because drought implies persistent dryness, the 6-month standardized precipitation index, standardized runoff index, and soil moisture anomalies are used to represent drought. The experiments were performed by forcing an AGCM with prescribed sea surface temperature anomalies (SSTAs) superimposed on the monthly mean SST climatology. Four model outputs from the NCEP Global Forecast System (GFS), NASA’s Seasonal-to-Interannual Prediction Project, version 1 (NSIPP1), GFDL’s global atmospheric model, version 2.1 (AM2.1), and the Lamont-Doherty Earth Observatory (LDEO)/NCAR Community Climate System Model, version 3 (CCM3) were analyzed in this study. Each run lasts from 36 to 51 yr. The impact of ENSO on drought over the United States is concentrated over the Southwest, the Great Plains, and the lower Colorado River basin, with cold (warm) ENSO events favoring drought (wet spells). Over the East Coast and the Southeast, the impact of ENSO is small because the precipitation responses to ENSO are opposite in sign for winter and summer. For these areas, a prolonged ENSO does not always favor either drought or wet spells. The direct influence of the AMO on drought is small. The major influence of the AMO is to modulate the impact of ENSO on drought. The influence is large when the SSTAs in the tropical Pacific and in the North Atlantic are opposite in phase. A cold (warm) event in a positive (negative) AMO phase amplifies the impact of the cold (warm) ENSO on drought. The ENSO influence on drought is much weaker when the SSTAs in the tropical Pacific and in the North Atlantic are in phase.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2009-11-15
    Beschreibung: Global-mean surface temperature is affected by both natural variability and anthropogenic forcing. This study is concerned with identifying and removing from global-mean temperatures the signatures of natural climate variability over the period January 1900–March 2009. A series of simple, physically based methodologies are developed and applied to isolate the climate impacts of three known sources of natural variability: the El Niño–Southern Oscillation (ENSO), variations in the advection of marine air masses over the high-latitude continents during winter, and aerosols injected into the stratosphere by explosive volcanic eruptions. After the effects of ENSO and high-latitude temperature advection are removed from the global-mean temperature record, the signatures of volcanic eruptions and changes in instrumentation become more clearly apparent. After the volcanic eruptions are subsequently filtered from the record, the residual time series reveals a nearly monotonic global warming pattern since ∼1950. The results also reveal coupling between the land and ocean areas on the interannual time scale that transcends the effects of ENSO and volcanic eruptions. Globally averaged land and ocean temperatures are most strongly correlated when ocean leads land by ∼2–3 months. These coupled fluctuations exhibit a complicated spatial signature with largest-amplitude sea surface temperature perturbations over the Atlantic Ocean.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2009-12-15
    Beschreibung: Water vapor in the midtroposphere is an important element for the earth radiation budget. Despite its importance, the relative humidity in the free troposphere is not very well documented, mainly because of the difficulties associated with its measurements. A new long-term archive of free tropospheric humidity (FTH) derived from the water vapor channel of the Meteosat satellite from 1983 to 2005 is introduced. Special attention is dedicated to the long-term homogeneity and the definition of the retrieval layer. It is shown to complement the existing databases and is used to establish the climatology of FTH. Interannual variability is then evaluated for each season by using a normalized interannual standard deviation. This normalization approach reveals the importance of the relative variability of the dry areas to the moist regions. In consequence, emphasis is on the driest area of the region. Focusing on composites of the moist and dry seasons of the time series, the authors demonstrate that the 500-hPa relative humidity field, reconstructed using an idealized Lagrangian model, is a good proxy for the FTH variability there. The analysis of the origin of the air mass, using the back trajectory model, points out that lateral mixing between the deep tropics and extratropical latitudes takes place over this area, as advocated in previous theoretical studies. Systematic estimation of this large-scale mixing shows that, indeed, a significant part of the interannual variability of the free tropospheric humidity in this subtropical region stems from the amount of mixing of air originating from the deep tropics versus extratropical latitudes. The importance of this mechanism in the general understanding of the FTH distribution and variability is then discussed.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2009-12-15
    Beschreibung: The variability of the north Australian wet season is examined by performing cluster analysis on the wind and thermodynamic information contained in the 2300 UTC radiosonde data at Darwin for 49 wet seasons (September–April) from 1957/58 to 2005/06. Five objectively derived regimes of the wet season are obtained and are found to differ significantly in their synoptic environment, cloud patterns, and rainfall distributions. One regime is primarily associated with the trade wind regime. Two regimes are associated with the lead up to and break periods of the monsoon at Darwin. A fourth regime is clearly identified with the active monsoon at Darwin and is offered as a definition of monsoon onset. This regime captures the active monsoon environment associated with significant widespread rainfall. The fifth regime is a mixed regime, with some days associated with the inactive monsoon, a period of westerly zonal winds at Darwin associated with relatively suppressed convection compared with the active monsoon. Other days for this regime are break period conditions with a low-level westerly flow below 900 hPa.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...