ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Public Library of Science (PLoS)
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • 2005-2009  (3)
  • 2005  (3)
Collection
Publisher
Years
  • 2005-2009  (3)
Year
  • 1
    Publication Date: 2022-05-25
    Description: © 2005 Sullivan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in PLoS Biology 3 (2005): e144, doi:10.1371/journal.pbio.0030144.
    Description: The oceanic cyanobacteria Prochlorococcus are globally important, ecologically diverse primary producers. It is thought that their viruses (phages) mediate population sizes and affect the evolutionary trajectories of their hosts. Here we present an analysis of genomes from three Prochlorococcus phages: a podovirus and two myoviruses. The morphology, overall genome features, and gene content of these phages suggest that they are quite similar to T7-like (P-SSP7) and T4-like (P-SSM2 and P-SSM4) phages. Using the existing phage taxonomic framework as a guideline, we examined genome sequences to establish ‘‘core’’ genes for each phage group. We found the podovirus contained 15 of 26 core T7-like genes and the two myoviruses contained 43 and 42 of 75 core T4-like genes. In addition to these core genes, each genome contains a significant number of ‘‘cyanobacterial’’ genes, i.e., genes with significant best BLAST hits to genes found in cyanobacteria. Some of these, we speculate, represent ‘‘signature’’ cyanophage genes. For example, all three phage genomes contain photosynthetic genes (psbA, hliP) that are thought to help maintain host photosynthetic activity during infection, as well as an aldolase family gene (talC) that could facilitate alternative routes of carbon metabolism during infection. The podovirus genome also contains an integrase gene (int) and other features that suggest it is capable of integrating into its host. If indeed it is, this would be unprecedented among cultured T7-like phages or marine cyanophages and would have significant evolutionary and ecological implications for phage and host. Further, both myoviruses contain phosphate-inducible genes (phoH and pstS) that are likely to be important for phage and host responses to phosphate stress, a commonly limiting nutrient in marine systems. Thus, these marine cyanophages appear to be variations of two well-known phages—T7 and T4—but contain genes that, if functional, reflect adaptations for infection of photosynthetic hosts in low-nutrient oceanic environments.
    Description: This research was supported by the US DOE under grant numbers DEFG02– 99ER62814 and DE-FG02–02ER63445, and the National Science Foundation under grant number OCE-9820035 (to SWC).
    Keywords: Oceanic cyanobacteria ; Prochlorococcus phages
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 696275 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Public Library of Science (PLoS)
    Publication Date: 2022-05-25
    Description: © 2004 Jennifer J. Wernegreen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in PLoS Biology 2 (2004): e68, doi:10.1371/journal.pbio.0020068.
    Description: Symbiosis, an interdependent relationship between two species, is an important driver of evolutionary novelty and ecological diversity. Microbial symbionts in particular have been major evolutionary catalysts throughout the 4 billion years of life on earth and have largely shaped the evolution of complex organisms. Endosymbiosis is a specifi c type of symbiosis in which one—typically microbial—partner lives within its host and represents the most intimate contact between interacting organisms. Mitochondria and chloroplasts, for example, result from endosymbiotic events of lasting significance that extended the range of acceptable habitats for life. The wide distribution of intracellular bacteria across diverse hosts and marine and terrestrial habitats testifies to the continued importance of endosymbiosis in evolution. Among multicellular organisms, insects as a group form exceptionally diverse associations with microbial associates, including bacteria that live exclusively within host cells and undergo maternal transmission to offspring. These microbes have piqued the interest of evolutionary biologists because they represent a wide spectrum of evolutionary strategies, ranging from obligate mutualism to reproductive parasitism (Buchner 1965; Ishikawa 2003) (Box 1; Table 1).
    Description: JJW gratefully acknowledges the support of the National Institutes of Health (R01 GM62626-01), the National Science Foundation (DEB 0089455), the National Aeronautics and Space Administration Astrobiology Institute (NNA04CC04A), and the Josephine Bay Paul and C. Michael Paul Foundation.
    Keywords: Endosymbiosis ; Endosymbiosis manipulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 541080 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-12
    Description: The rich fossil record of horses has made them a classic example of evolutionary processes. However, while the overall picture of equid evolution is well known, the details are surprisingly poorly understood, especially for the later Pliocene and Pleistocene, c. 3 million to 0.01 million years (Ma) ago, and nowhere more so than in the Americas. There is no consensus on the number of equid species or even the number of lineages that existed in these continents. Likewise, the origin of the endemic South American genus Hippidion is unresolved, as is the phylogenetic position of the “stilt-legged” horses of North America. Using ancient DNA sequences, we show that, in contrast to current models based on morphology and a recent genetic study, Hippidion was phylogenetically close to the caballine (true) horses, with origins considerably more recent than the currently accepted date of c. 10 Ma. Furthermore, we show that stilt-legged horses, commonly regarded as Old World migrants related to the hemionid asses of Asia, were in fact an endemic North American lineage. Finally, our data suggest that there were fewer horse species in late Pleistocene North America than have been named on morphological grounds. Both caballine and stilt-legged lineages may each have comprised a single, wide-ranging species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...