ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (854)
  • Inorganic Chemistry  (567)
  • 1995-1999  (1,421)
  • 1990-1994
  • 1950-1954
  • 1995  (1,421)
Collection
Publisher
Years
  • 1995-1999  (1,421)
  • 1990-1994
  • 1950-1954
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 27-32 
    ISSN: 0006-3592
    Keywords: esterification ; lipase ; glycerides ; organic solvent ; surfactant ; bioconversion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Several surfactant-coated enzymes have been prepared by coating lipases of various origins with a nonionic surfactant, glutamic acid dioleylester ribitol (2C18Δ9GE). Enzymatic interesterification of tripalmitin with oleic acid using the surfactant-coated lipase was carried out in organic media. The surfactant-coated lipases could effectively catalyze the interesterification of glycerides better than did the powder lipases. A suitable organic solvent was an aliphatic hydrocarbon such as isooctane. The enzymatic activity for the interesterification strongly depended on the origin of the lipase. The surfactant-coated lipase prepared by Mucor javanicus showed the highest enzymatic activity for the interesterification of glycerides, although its powder lipase did not show enzymatic activity. Selective interesterification of glycerides could be performed by adjusting the concentration ratio of oleic acid to tripalmitin in isooctane. Di-substituted glyceride could be selectively produced when the concentration ratio of carboxylic acid to glycerides was 7. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 54-62 
    ISSN: 0006-3592
    Keywords: oxygen uptake rate ; animal cell cultivation ; hybridoma ; monoclonal antibody ; glutamine ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Different methods for oxygen uptake rate (OUR) determinations in animal cell cultivation were investigated using a high quality mass spectrometer. Dynamic measurements have considerable disadvantages because of disturbances of the growing cells by the necessary variations of dissolved oxygen concentration. Only infrequent discrete measurements are possible using this method. Stationary liquid phase balance yielded better results with much higher frequency. Gas phase balancing has the advantage of not requiring dissolved oxygen measurement and knowledge of KLa, both of them are easily biased. It was found that simple gas phase balancing is either very inaccurate (error larger than expected signal) or very slow, with gas phase residence times of several hours. Therefore, a new method of aeration was designed. Oxygen and CO2 transfer are mainly achieved via sparging. The gas released to the headspace is diluted with a roughly 100-fold stream of an inert gas (helium). Through this dilution, gas ratios are not changed for O2, CO2, Ar, and N2. The measurement of lower concentrations (parts per million and below) is easy using mass spectrometry with a secondary electron multiplier. With this new method an excellent accuracy and sufficient speed of analysis were obtained. All these on-line methods for OUR measurement were tested during the cultivation of animal cells. The new method allowed better study of the kinetics of animal cell cultures as was shown with a hybridoma cell line (HFN 7.1, ATCC CRL 1606) producing monoclonal antibodies against human fibronectin. With the aid of these methods it was possible to find a correlation between a rapid decrease in oxygen uptake rate (OUR) and glutamine concentration. The sudden decrease in OUR can be attributed to glutamine depletion. This provided a basis for the controlled addition of glutamine to reduce the formation of ammonia produced by hydrolysis. This control method based on OUR measurement resulted in increased cell concentration and threefold higher product concentration. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 91-94 
    ISSN: 0006-3592
    Keywords: mass transfer ; Monod equation ; growth rate ; kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An alternative interpretation of the growth rate-substrate concentration dependence is presented. This is based on the assumption that the main factors affecting growth rate are transfer of substrate from the medium and the maximum growth velocity, which is that observed when no substrate limitations occur. This approach allows the approximate prediction of one of the two kinetic constants required, and may be of great use, especially for continuous cultures. It is the first attempt to provide a phenomenological explanation for the large variations observed in the values of the Monod constant, Ks, reported in the literature. © 1995 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 97-106 
    ISSN: 0006-3592
    Keywords: antibody integrity ; human monoclonal antibodies ; insect cells ; mammalian cell culture ; proteolytic activity ; protein microheterogeneity ; serum-free media ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To investigate the effects of factors secreted by different cell lines on human monoclonal antibody (MAb) integrity, 600 mg of a human MAb, which specifically binds to human erythrocytes, were produced in a perfusion process. After purification by protein A affinity chromatography, the MAb was used for integrity testing in supernatants of several cell lines to investigate their potential to degrade the antibody in the extracellular environment. One insect cell line (IPLB-SF-21 AE) and four mammalian cell lines [CHO K1, BHK-21 (C13), C1271, P3-X63-Ag8.653], all of them commonly used for the production of recombinant proteins, and the human-human-mouse heterohybridoma cell line itself (H-CB-hahE), were adapted to serum-free culture media. For integrity testing all cell lines were cultivated in spinner flasks using serum-free media supplemented with 30 μg mL-1 of purified MAb. MAb integrity was assayed by SDS polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing, both followed by Western blotting, and an antigen binding assay. None of the mammalian cells showed any detectable effects on antibody stability and integrity during exponential growth, whereas isoelectric focusing of monoclonal antibody taken from IPLB-SF-21 AE culture supernatants revealed a new band indicating a partial modification of the MAb by secreted factors of these cells. This observation did not correlate with the total proteolytic activity, which was measured in all supernatants and found to be lowest in the insest cell cultures. For mammalian cell cultures, it could be concluded from these findings that shifts of the antibody microheterogeneity pattern, which can be found normally as a result of variations in different production parameters, are not caused by extracellular factors once the product has been secreted into the supernatant. In addition to their well-known advantages in posttranslational modifications (e.g., formation of complex type N-glycans), mammalian cells appear to be more suitable as expression systems for human monoclonal antibodies to be used in vivo when compared with baculovirus-infected insect cells. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 122-128 
    ISSN: 0006-3592
    Keywords: on-line calibration ; continuous monitoring ; biosensor system ; enzyme reactor ; glucose ; lactate ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An on-line calibration procedure for application in continuous monitoring systems has been developed. Control of the calibration value and recalibration on-line during monitoring is possible without having to disrupt the sample withdrawal. The calibration procedure has been applied and evaluated in a continuous biosensor system based on the detection of oxygen depletion during enzymatic substrate conversion by immobilized oxidases. Evaluation included on-line calibration during continuous measurements of glucose and lactate in bovine blood samples. Calibration of the complete system consisting of a sampling device, a sample handling step, a biocatalytic step, a detection step, and a data processing unit is performed by the on-line addition of a calibration solution to a blank sample which is fed through the system. The calibration cycle is completed within 5.5 min. When recalibration is carried out during monitoring, the calibration solution is added to the sample, instead of to a blank sample, and the increase in outlet singl is registered. The major advantage of this internal standard principle is that the calibration solution is fed through the whole system according to the same path as the sample solution and thus takes into account all parameters influencing the sample. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 219-228 
    ISSN: 0006-3592
    Keywords: formate conversion ; mass spectrometer ; anaerobic conversion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The dynamics of the anaerobic conversion of formate in a microbial mixed culture taken from an anaerobic fluidized bed reactor was studied using a new stirred micro reactor equipped with a membrane mass spectrometer. The microreactor with a toroidally shaped bottom and pitched blade turbine and a cylindrical flow guide was thermostated and additionally equipped with a pH electrode and pH control. During fed-batch experiments using formate, the dissolved gases (methane, hydrogen, and carbon dioxide), as well as the acid consumption rates for pH control were monitored continuously. Initially and at the end of each experiment, organic acids were analyzed using ion chromatography (IC). It was found that about 50% of the formate was converted to methane via hydrogen and carbon dioxide, 40% gave methane either directly or via acetate. This was calculated from experiments using H13CO3- pulses and measurement of 12CH4 and 13CH4 production rates. About 10% of the formate was converted to lactate, acetate, and propionate, thereby increasing the measured CO2/CH4 production ratio. The nondissociated formic acid was shown to be rate determining. From the relatively high Ks value of 2.5 mmol m-3, it was concluded that formate cannot play an important role in electron transfer. During dynamic feeding of formate, hydrogen concentration always increased to a maximum before decreasing again. This peak was found to be very discriminative during modeling. From the various models set up, only those with two-stage degradation and double Monod kinetics, both for CO2 and hydrogen, were able to describe the experimental data adequately. Additional discrimination was possible with the IC measurement of organic acids. © 1995 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 239-244 
    ISSN: 0006-3592
    Keywords: cellulase ; newsprint ; deinking sludge ; surfactant ; hydrolysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Disposal of sludge from deinking mills represents a significant proportion of operating costs. Bioconversion of the cellulosic fraction of deinking sludge (DIS) to ethanol greatly reduces disposal costs while producing an environmentally friendly fuel. In this study, the cellulosic fraction of newsprint and deinking sludge was hydrolysed to produce fermentable sugars. For newsprint, a particle size of 1 to 1.5 mm provided optimal reaction rates in batch reactors over practical hydrolysis times, and reducing sugar concentrations as high as 35 g/L could be achieved using a fed-batch reactor configuration. For both newsprint and DIS, the hydrolysis rate increased nonlinearly with enzyme loading. Tween-80 only marginally improved sugar production but was able to release sugars from cellulosic substrates in the absence of lytic enzymes, in an amount proportional to the surfactant concentration and the substrate particle size. DIS was relatively recalcitrant to enzymatic hydrolysis, possibly due in part to inhibition by hydrophobic constituents. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 251-260 
    ISSN: 0006-3592
    Keywords: macroalgal cells ; stirred-tank bioreactor ; photolithotrophic cultivation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Filamentous cell cultures derived from female gametophytes of the temperate brown macroalga Laminaria saccharina were photolithotrophically cultivated in artificial seawater medium within an illuminated 1.3-L stirred-tank bioreactor at 13°C using CO2 in air as the carbon source. A Monod model adequately described light-saturated growth. The apparent half-saturation constant (Ko) was 23 μE/m2-s, and maximum specific growth rate was 0.15 day-1. At a constant inoculation cell density of 50 mg DCW/L, biomass productivity after 26 days of cultivation increased from 630 mg DCW/L at 18 μE/m2-s to 890 mg DCW/L at 228 μE/m2-s. At 98 μE/m2-s, 1.1 vvm aeration rate, and 250 rpm impeller speed, the CO2 transfer rates (CO2 TRs) and CO2 consumption rates (rco2) were determined over the cultivation period. At peak CO2 demand, the maximum CO2 TR was 0.19 mmol CO2/L-h, but rco2 was only 0.15 mmol CO2/L-h, implying that the culture was not CO2 transport limited. This is the first reported bioreactor cultivation study of cell cultures derived from a macrophytic marine alga. © 1995 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995) 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 304-309 
    ISSN: 0006-3592
    Keywords: phenol ; substituted phenol ; tyrosinase ; immobilization ; chitosan ; coagulant ; immobilized enzyme ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Removal of phenols and aromatic amines from industrial wastewater by tyrosinase was investigated. A color change from colorless to darkbrown was observed, but no precipitate was formed. Colored products were found to be easily removed by a combination treatment with tyrosinase and a cationic polymer coagulant containing amino group, such as hexamethylenediamine-epichlorohidrin polycondensate, polyethleneimine, or chitosan. The first two coagulants, synthetic polymers, were more effective than chitosan, a polymer produced in crustacean shells. Phenols and aromatic amines are not precipitated by any kind of coagulants, but their enzymatic reaction products are easily precipitated by a cationic polymer coagulant. These results indicate that the combination of tyrosinase and a cationic polymer coagulant is effective in removing carcinogenic phenols and aromatic amines from an aqueous solution. Immobilization of tyrosinase on magnetite gave a good retention of activity (80%) and storage stability i.e., only 5% loss after 15 days of storage at ambient temperature. In the treatment of immobilized tyrosinase, colored enzymatic reaction products were removed by less coagulant compared with soluble tyrosinase. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 337-343 
    ISSN: 0006-3592
    Keywords: dielectrophoresis ; cells, separation of ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Dielectrophoresis is the movement of particles in non-uniform alternating and direct current (AC, DC) electric fields. When nonuniform electric fields are created between microelectrodes, cells will redistribute themselves around the electrodes, the force holding the cells in place dependig on the local electric field and on the electrical properties of the cells themselves and the suspending medium. Steric drag forces produced by a gentle fluid flow in the chamber can be used to separate cells by selectively lifting cells from potential energy wells produced by the electric field. The technique is demonstrated in the batch separation of bacteria, yeast cells, and plant cells. Continuous separation and extraction of two cell types can be achieved by repeated reversing of the fluid flow direction in phase with the switching on and off of the applied voltage, and the efficacy of the technique is demonstrated for viable and nonviable (heat-treated) yeast cells. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 344-355 
    ISSN: 0006-3592
    Keywords: esterification ; Chromobacterium viscosum ; lipase ; microemulsions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Chromobacterium viscosum (CV) lipase solubilized in water-in-oil (w/o) microemulsions based on the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) have been used for multigram-scale ester synthesis, including the kinetic resolution of a secondary alcohol. The stability of CV lipase in all the CTAB microemulsions studied was excellent and was superior to that observed in aqueous buffer at the same pH and temperature. Kinetic studies were performed using the synthesis of ethylhexadecanoate as a model reaction. Under pseudo-first-order conditions, the synthesis rates were linearlydependent on the enzyme and fatty acid concentrations and the R dependence shows the characteristic bell-shaped curve (where R = [H2O]/[surfactant]). The dependence of enzyme activity toward octyldecanoate synthesis on the pH of the dispersed buffer phase is in marked contrast to that observed for the pH dependence of CV lipase toward p-nitrophenylbutyrate hydrolysis. In the former case, the pH-activity profile is approximately sigmoidal, which may reflect the ionization state of the fatty acid substrate. In the latter case, the pH dependence is minimal at both R = 10 and R = 50, suggesting the enzyme does not experience a changed pH environment. Inclusion of a pH-sensitive probe molecule into those incubations containing fatty acid clearly demonstrates that the probe molecule experiences a changed environment consistent with that expected for the selected buffer. An in situ Fourier transform nuclear magnetic resonance (FT-NMR) assay has been developed which allows continuous monitoring of the esterification reactions, thereby providing an additional means of determining initial rates. The method may be of general value for lipase assays in microemulsions since it may provide, at the same time, information regarding enzyme regioselectivity. © 1995 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995) 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 18-26 
    ISSN: 0006-3592
    Keywords: hybridoma ; cell death ; chemostat ; autoinhibitor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In the present study, the steady-state cell density (X) of chemostat cultures of murine hybridoma was varied by the concentration of glucose and glutamine in culture medium and the dissolved oxygen partial pressure. Except at low glutamine and low oxygen levels, the specific death rate (kd) of the cultures was found to decrease with increasing dilution rate (D). However, the plot of kd vs. X/D yielded linear relation, which suggests that cell death was due to a non-growth-linked inhibitory product of the cells. The kd value measured at low glutamine and low oxygen levels remained practically unchanged over a wide range of D between 0.020 and 0.029 h-1. The kd for low oxygen cultures was always lower than the values obtained in low glucose and low glutamine cultures. A low-molecular-weight component of possibly less than 3000 MW was detected to be cell-death-inducing in the supernatant of exponentially growing cultures. It was neither lactate nor ammonium. The autoinhibitor was not cell-line specific. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 63-68 
    ISSN: 0006-3592
    Keywords: dissolved-hydrogen probe ; anaerobic digestion ; hydrogen ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The concentration of diatomic hydrogen in the liquid phase of an anaerobic digester was used to determine the onset of digester failure induced by substrate overloading. The construction of an inexpensive probe to measure dissolved hydrogen, having a partial pressure detection limit of 30 Pa, is described. An increase in the partial pressure of dissolved hydrogen, from less than 30 Pa to 400 Pa, was observed when the D-glucose concentration in a laboratory-scaled digester was increased rapidly to 10 mM. However, when the digester was gradually overloaded, an increase in the dissolved-hydrogen partial pressure was not observed until after the digester failed. The accumulation of volatile fatty acids and digester failure were observed at dissolved-hydrogen partial pressures below 30 Pa. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 86-90 
    ISSN: 0006-3592
    Keywords: hybridoma ; nutrition ; cell death ; apoptosis ; monoclonal antibody ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Association of the availability of nutrients with the phenomenon of programmed cell death - apoptosis - was investigated using hybridoma cells cultured in protein-free medium under conditions of starvation, i.e., in RPMl-1640 medium diluted to 50% with saline. Amino acid mixtures, such as MEM essential amino acids or MEM nonessential amino acids were found to prevent starvation death significantly when added to the diluted medium in 1 to 2 mM concentrations, the MEM vitamin mixture was ineffective, and glutamine displayed a moderate growth-supporting effect. The specific monoclonal antibody production rate in cultures supplemented with amino acid mixtures was strikingly low, whereas supplementation with glutamine alone or simultaneously with other amino acids resulted in a specific antibody production rate comparable with the rate observed in undiluted medium. © 1995 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995) 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 314-324 
    ISSN: 0006-3592
    Keywords: product formation ; kinetic model ; microbial cells ; mammalian cells ; substrate excess ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Growth of microbial and mammalian cells can be classified into substrate-limited and substrate-sufficient growth according to the relative availability of the substrate (carbon and energy source) and other nutrients. It has been observed for a number of microbial and mammalian cells that the consumption rate of substrate and energy (ATP) is generally higher under substratesufficient conditions than under substrate limitation. Accordingly, the product formation under substrate excess often exhibits different patterns from those under substrate limitation. The extent of increase or decrease in product formation may depend not only on the nature of limitation and cell growth rate but also on the residual substrate concentration in a relatively wide range. The product formation kinetic models existing in literature cannot describe these effects. In this study, the Luedeking-Piret kinetic is extended to include a term describing the effect of residual substrate concentration. The extended model has a similar structure to the kinetic model for substrate and energy consumption rate recently proposed by Zeng and Deckwer. The applicability of the extended model is demonstrated with three microbial cultures for the production of primary metabolites and three hybridoma cell cultures for the production of ammonia and lactic acid over a wide range of substrate concentration. The model describes the product formation in all these cultures satisfactorily. Using this model, the range of residual substrate concentration, in which the product formation is affected, can be quantitatively assessed. © 1995 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 325-332 
    ISSN: 0006-3592
    Keywords: cell recycle ; fed-batch ; oxygen uptake ; dissolved oxygen ; Candida lipolytica ; citric acid ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of dissolved oxygen on citric acid production and oxygen uptake by Candida lipolytica Y 1095 was evaluated in cell recycle and fed-batch fermentation systems. The maximum observed volumetric productivity, which occurred at a dilution rate of 0.06 h-1, a dissolved oxygen concentration of 80%, and a biomass concentration of 5% w/v, in the cell recycle system, was 1.32 g citric acid/L · h. At these same conditions, the citric acid yield was 0.65 g/g and the specific citric acid productivity was 24.9 mg citric acid/g cell · h. In the cell recycle system, citric acid yields ranged from 0.45 to 0.72 g/g. Both the volumetric and specific citric acid productivities were dependent on the dilution rate and the concentration of dissolved oxygen in the fermentor. Similar productivities (1.29 g citric acid/L · h) were obtained in the fed-batch system operated at a cycle time of 36 h, a dissolved oxygen concentration of 80%, and 60 g total biomass. Citric acid yields in the fed-batch fermentor were consistently lower than those obtained in the cell recycle system and ranged from 0.40 to 0.59 g/g. Although citric acid yields in the fed-batch fermentor were lower than those obtained in the cell recycle system, higher citric:isocitric acid ratios were obtained in the fed-batch fermentor. As in the cell recycle system, both the volumetric and specific citric acid productivities in the fed-batch fermentor were dependent on the cycle time and dissolved oxygen concentration. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 88-92 
    ISSN: 0006-3592
    Keywords: cell cycle ; hydrodynamic forces ; apoptosis ; cell culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Exposure of animal cells to intense hydrodynamic forces exerted in turbulent capillary flow, and by controiled agitation and aeration, resulted in preferential destruction of S and G2 cells and the extent of destruction of these cells was dependent upon the intensity of the action. The loss of these cells was possibly due to their larger size. However, the appearance of large numbers of membrane-bound vesicular structures similar to apoptotic bodies as well as cells with low DNA stainability (in a sub-G1 peak) suggested that the action of adverse hydrodynamic forces on these large cells may at least in part be to induce an apoptotic response. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 93-98 
    ISSN: 0006-3592
    Keywords: photosynthetic reaction center ; liquid crystals ; cubic phases ; immobilization ; Chloroflexus aurantiacus ; photochemistry ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Photosynthetic reaction centers, isolated and purified from the facultative phototrophic bacterium Chloroflexus aurantiacus, were immobilized in optically transparent lipidic cubic phases composed of 42% (w/w) 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine and 58% (w/w) water. The immobilized photosynthetic protein retains its native properties, as indicated by visible and circular dichroic spectra. The ground state visible spectrum of the immobilized reaction centers is very similar to the corresponding spectrum in aqueous solution, indicating that the protein pigments are not extracted into the lipidic regions of the cubic phase. The secondary structure of the protein is maintained in the immobilized state, as determined by far-UV circular dichroism spectroscopy in the 200- to 250-nm range. Moreover, immobilized reaction centers retain their photochemical activity: a reversible photo-oxidation of the primary electron donor (P) is seen upon continuous illumination. Furthermore, the entrappment of reaction centers does not affect the kinetics of charge recombination between the photo-oxidized primary donor (P+) and the photoreduced primary quinone acceptor, generated by a short flash of light. Reaction centers devoided of the secondary quinone acceptor can be easily reconstituted in cubic phases by means of their coimmobilization with 1,4-naphtoquinone. Indeed, the kinetics for charge recombination in reconstituted reaction centers is dramatically slower than the corresponding kinetics in the unreconstituted protein. Interestingly, immobilized reaction centers are significantly stabilized as compared with reaction centers in aqueous solution: the integrity of the protein in the cubic phase is maintained for at least 5 months, whereas in water solution 50% of the activity is lost within 2 months. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 117-131 
    ISSN: 0006-3592
    Keywords: biochemical model ; Penicillium chrysogenum ; flux analysis ; penicillin ; metabolic engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Based on a review of the Penicillium chrysogenum biochemistry a stoichiometric model has been set up. The model considers 61 internal fluxes and there are 49 intracellular metabolites which are assumed to be in pseudo-steady state. In addition to the intracellular fluxes the model considers the uptake of 21 amino acids. From the stoichiometric model the maximum theoretical yield of penicillin V is calculated to 0.43 mol/mol glucose. If biosynthesis of cysteine is by direct sulfhydrylation rather than by transsulfuration, the maximum theoretical yield is about 20% higher, i.e., 0.50 mol/mol glucose. The theoretical yield decreases substantially if α-aminoadipate is converted to 6-oxo-piperidine-2-carboxylic acid (OPC). If only 40% of the α-aminoadipate is recycled, the maximum theoretical yield is 0.31 mol/mol glucose. The uptake rates of glucose, lactate, γ-aminobutyrate, and 21 amino acids were measured during fed-batch cultivations. The rates of formation of penicillin V, δ-(L-α)-aminoadipyl-L-cysteinyl-D-valine (ACV), OPC, and the pool of isopenicillin N, 6-APA, and 8-HPA were also measured. Finally the synthesis rates of the biomass constituents RNA/DNA, protein, lipid, carbohydrate, and amino carbohydrate were measured. From these measured rates and the stoichiometric model the metabolic fluxes through the different intracellular pathways are calculated. The calculations show that penicillin formation is accompanied by a large flux through the pentose phosphate (PP) pathway due to a large requirement for nicotinamide-adenine dinucleotide phosphate (NADPH) used in the biosynthesis of cysteine. If cysteine is added to the medium, the flux through the PP pathway decreases. From the stoichiometric model YxATP is calculated to 87 mmol adenosine triphosphate (ATP)/g dry weight (DW), and from the flux calculations mATP is found to 3 mmol ATP/g DW/h. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 172-174 
    ISSN: 0006-3592
    Keywords: reversed micelles ; extraction ; trypsin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: By using trypsin as the model protein and AOT as the model surfactant, the effect of a variety of solvents on protein transfer and activity recovery during the liquid-liquid reversed micellar extraction was investigated. It was found that several solvents, including isooctane, octane, heptane, and kerosene, had a similar effect on the recovery of trypsin activity after a full cycle of forward and backward extraction, and could all be used as the solvents for AOT-reversed micelles in trypsin extraction. Two other solvents (hexane and cyclohexane), however, were not so efficient. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 270-275 
    ISSN: 0006-3592
    Keywords: hybridoma ; antibody ; heavy chain ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: One drawback to the in vitro production of monoclonal antibodies is the loss of productivity exhibited by hybridomas over time, which has been shown to correspond to the appearance of a nonproducing subpopulation. In this study, we monitored the presence of antibody components, both intra- and extracellular, between producing and nonproducing hybridomas. A nonproducing cell population appeared which lacked heavy chain, while all cultures continued to produce light chain, indicating that the loss in antibody production resulted from the absence of heavy chain and occurred before protein assembly or secretion. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 288-297 
    ISSN: 0006-3592
    Keywords: protein purification ; peptide libraries ; ligands ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Peptide libraries can be used to identify ligands that bind specifically to a desired protein. These peptides may have significant advantages as specific ligands for affinity chromatography separations. This article describes the use of one of such peptide, Try-Asn-Phe-Glu-Val-Leu, as a ligand for the purification of S-protein using affinity chromatography. General strategies for peptide immobilization are discussed and the conditions for peptide immobilization to Emphaze™ gel are optimized. The effects of peptide orientation and peptide densities on protein binding are studied. Results indicate that the peptide affinity is not affected by the orientation of the peptide during immobilization, but association constants can be reduced by one order of magnitude when compared with the values in solution.With increased peptide density, the protein binding capacity of the gel increases, but both the percentage of peptide utilization and apparent binding constant between immobilized peptide and S-protein decrease. S-protein is separated from a mixture with BSA via affinity chromatography using specific elution with the peptide in solution.Finally, direct purification of S-protein from an enzymatic digestion mixture of ribonuclease A is demonstrated.© 1995 John Wiley & Sons, Inc
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 277-287 
    ISSN: 0006-3592
    Keywords: phosphorus removal ; biological ; kinetics ; metabolic model ; polyphosphate ; PHB ; glycogen ; batch reactor, sequenced ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A structured metabolic model is developed that describes the stoichiometry and kinetics of the biological P removal process. In this approach all relevant metabolic reactions underlying the metabolism, considering also components like adenosine triphosphate (ATP) and nic-otinamide-adenine dinucleotide (NADH2) are describedbased on biochemical pathways. As a consequence of the relations between the stoichiometry of the metabolic reactions and the reaction rates of components, the required number of kinetic relations to describe the process is reduced. The model describes the dynamics of the storage compounds which are considered separately from the active biomass. The model was validated in experiments at a constant sludge retention time of 8 days, over the anaerobic and aerobic phases in which the external oncentrations as well as the internal fractions of the relevant components involved in the P-removal process were monitored. These measurements include dissolved acetate, phosphate, and ammonium; oxygen consumption; poly-β-hydroxybutyrate (PHB); glycogen; and active biomass. The model satisfactorily describes the dynamic behavior of all components during the anaerobicand aerobic phases.© 1995 John Wiley & Sons, Inc
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 308-318 
    ISSN: 0006-3592
    Keywords: hybridoma ; cell growth ; antibody production ; toxic waste removal ; electrical technique ; electrokinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Ammonium and lactate are two known toxic products detrimental to mammalian cell growth and productivity. An electrokinetic technique, utilizing an electrophoretic mechanism, was developed to remove these cellular wastes in-situ from suspension hybridoma (ATCC CRL-1606) cultures to enhance cell growth and productivity. This technique applies continuously a dc electric field to selectively remove the electrically charged wastes. The experiments were shown to be successful in the removal of externally added 10 rnM ammonium and 45 mM lactate while maintaining the chemostatic condition of culture medium in a cell-free condition under an electric current density of 50 A/m2. Toxic levels of ammonium were added, ranging from 7.5 to 12.5 mM, at the start of the hybridoma culture, and the applied dc electric fields were able to completely remove these added materials. This in turn released the inhibition and restored the cell growth. Finally, this electrokinetic technique was applied to the batch and glutamine fed-batch hybridoma cultures. At an applied electric current density of 50 A/m2, this was able to completely remove cell-produced ammonium and increased the cell growth and antibody titer by 30% to 50%, respectively, compared to the control experiment in the absence of the electric field. Lastly, the applied electric current density of 50 A/m2 did not affect cellular functionalities such as glucose and glutamine consumption and antibody productivity.© 1995 John Wiley & Sons, Inc
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 0006-3592
    Keywords: anaerobic biodegradation ; polychlorinated aliphatics ; acclimation ; enrichment ; polyurethaneactivated carbon carrier ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The simultaneous biodegradation of toxic compounds in mixtures is a major current concern. To bioremediate a toxic mixture, we designed a strategy combining an ad-sorbent carrier with an ecological and nutritional system which allowed work close to heavily polluted conditions in nature. Starting from a methanogenic community, we developed a microbial consortium acclimated to a mixture of about 30 chlorinated aliphatics in a fixed-film stationary-bed bioreactor. Prior to the establishment of a durable period of dechlorination, an interval of progressive dechlorination of the toxic mixture was observed during which the excess of the toxic compounds was stored on the carrier. The latter, consisting of activated carbon in a polyurethane foam, allowed us to work at concentrations far above the solubility of the toxic compounds (apparent concentrations of about 10 g/L). The complete disappearance of hexachloroethane as well as its lower homologues, penta-, tetra-, and trichloroethane, present in the toxic mixture, was observed. Additionally, octachlorocyclopentene, carbon tetrachloride, trichloro-ethylene, tetrachloroethylene, and hexachloro-1,3-butadiene also completely disappeared. For the four latter compounds, from mass balances in the bioreactor, degradation rates around 10 μmol/L per day were determined with total dechlorination. The enrichment culture thus developed exhibited high degradation performances similar to those reported in the literature for pure or enriched anaerobic microbial cultures in contact with a single toxic compound. The results demonstrate the possibility of concurrent high-rate degradation of several highly chlorinated toxic compounds, under conditions approximating field situations.© 1995 John Wiley & Sons, Inc
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 536-544 
    ISSN: 0006-3592
    Keywords: protein glycosylation ; recombinant proteins ; process control ; product integrity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of different short-term controlled cell culture conditions on the product quality of a genetically engineered human interleukin-2 N-glycosylation variant protein expressed from a baby hamster kidney cell line (BHK-21) has been investigated. A perfused 2-L stirred tank reactor was used. Products purified from the culture supernatant of cells grown under experimentally initiated nutrient limitations (glucose, amino acids, pO2) were characterized by their HPLC-elution profile, SDS-PAGE and western blotting, amino acid sequencing as well as for their N-linked carbohydrates, using “HPAEC-PAD fingerprinting” and methylation analysis. The glycoprotein products secreted from cells under the different culture conditions (kept for 24 h, after an adaption time period of 48 h) showed an almost identical oligosaccharide pattern. By contrast, short-term changes of the culture condition led to considerable differences in the ratio of glycosylated to unglycosylated protein forms. Significant amounts of NH2-terminally truncated polypeptide forms were observed. They lacked proponderantly the first two amino acids; however, under certain culture conditions forms lacking up to eight NH2-terminal amino acids were detected. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 279-284 
    ISSN: 0006-3592
    Keywords: carbon tetrachloride ; nitrate inhibition ; biodegradation ; kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The kinetics of nitrate inhibition of carbon tetrachloride (CT) transformation were examined using a denitrifying consortium. Comparison of data from fed-batch experiments to the model reported by Hooker et al. indicate that the inhibition constant ranges between 3.2 and 21 mg/L, with an average of 8.8 mg/L. This range is much lower than the previously reported value of 169 mg/L. Simulations using the corrected parameter accurately reflect this new data and the data reported by Hooker et al. In contrast, the earlier reported coefficient value does not reflect the data reported in this work. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 0006-3592
    Keywords: chimeric antibodies ; transfectoma cells ; hollow fiber fermentor ; immunoglobulin enhancer ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Methods for the selection of transfectoma cells that express large quantities of mouse-human chimeric antibodies have been develped. SP2/0 mouse myeloma cells were transfected with pSV2-gpt and pSV2-neo based immunoglobulin expression vectors. Double transfectants were selected using the xanthine-guanine phosphoribosyl transferase (gpt)and the neomycin (neo) selection marker genes. ELISA-based screening of transfectoma clones resulted in the isolation of IgG-producing transfectomas. Introduction of the kappa light-chain 3′-enhancer into the light-chain expression vector significantly increased immunoglobulin expression, but only when the enhancer was located at its physiological site, 9 kb downstream of the kappa constant region exon. With some of the transfectomas, final yields of up to 80 mg/L of chimeric IgG were obtained in conventional flask cultures using serum-free growth medium. A pilot-scale AcuSyst Maximizer hollow fiber cell culture system was used for the production of gram amounts of chimeric IgG. Results obtained with different transfectoma clones in conventional culture were not fully predictive for yields in the hollow fiber system. In contrast, differences in productivity between individual clones in the laboratory-scale Tecnomouse cell culture unit were comparable with those in the Maximizer system. Up to 200 mg of chimeric IgG were produced per day in one Maximizer bioreactor. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 356-365 
    ISSN: 0006-3592
    Keywords: Escherichia coli KO11 ; ethanol production ; kinetic model ; lignocellulosic hydrolysate ; fermentation, mixed sugar ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The fermentation kinetics for separate as well as simultaneous glucose and xylose fermentation with recombinant ethanologenic Escherichia coli KO11 are presented. Glucose and xylose were consumed simultaneously and exhibited mutual inhibition. The glucose exhibited 15 times stronger inhibition in xyclose fermentation than vice versa. The fermentation of condensate from steampretreated willow (Salix) was investigated. The kinetics were studied in detoxified as well as in nondetoxified condensate. The fermentation of the condensate followed two phases: First the glucose and some of the pentoses (xylose in addition to small amounts of arabinose) were fermented simultaneously, and then the remaining part of the pentoses were fermented. The rate of the first phase was independent of the detoxification method used, whereas the rate of the second phase was found to be strongly dependent. When the condensate was detoxified with overliming in combination with sulfite, which was the best detoxification method investigated, the sugars in the condensate, 9 g/L, were fermented in 11 h. The same fermentation took 150 h in nondetoxified condensate. The experimental data were used to develop an empirical model, describing the batch fermentation of recombinant E. coli KO11 in the condensate. The model is based on Monod kinetics including substrate and product inhibition and the sum of the inhibition exerted by the rest of the inhibitors, lumped together. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995) 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 387-397 
    ISSN: 0006-3592
    Keywords: transesterification ; water activity ; lipolytic enzymes ; gas ; bioreactor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fusarium solani cutinase and Candida cylindracea lipase were used to catalyze a transesterification reaction in a continuous gas/solid bioreactor. In this system, a solid phase composed of a packed enzymatic preparation was continuously percolated with carrier gas which fed substrate and removed reaction products simultaneously. Different conditions of immobilization were used and compared to the results obtained with a nonsupported enzyme. The enzymatic activity was found to be highly dependent of a key parameter: water activity (aw). Biocatalyst stability was greatly influenced by water activity and the choice of immobilization technique for the enzymatic material. For free and adsorbed enzymes, water requirements exhibited optima which corresponded to the complete hydration coverage of the protein. These optima presented a good correlation with the isotherm sorption curves obtained for the different preparations. In this work are reported the results concerning the possibility of using a continuous system able to operate at controlled water activity in a heterogeneous medium. Lipolytic enzyme in such a system appears to be a new process for the biotransformation of volatile esters. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 579-587 
    ISSN: 0006-3592
    Keywords: hybridoma cells ; process control ; energy metabolism ; on-line nutrient feeding ; fed-batch culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A hybridoma cell line was cultivated in fed-batch cultures using a low-protein, serum-free medium. On-line oxygen uptake rate (OUR) measurement was used to adjust the nutrient feeding rate based on glucose consumption, which was estimated on-line using the stoichiometric relations between glucose and oxygen consumption. Through on-line control of the nutrient feeding rate, not only sufficients were supplied for cell growth and antibody production, but also the concentrations of glucose and other important nutrients such as amino acids were maintained at low levels during the cell growth phase. During the cultivation, cell metabolism changed from high lactate production and low oxygen consumption to low lactate production and high oxygen consumption. As a result the accumulation of lactate was reduced and the growth phase was extended. In comparison with the batch cultures, in which cells reached a concentration of approximately 2 × 106 cells/mL, a very high concentration of 1.36 × 107 cells/mL with a high cell viability (〉90%) was achieved in the fed-batch culture. By considering the consumption of glucose and amino acids, as well as the production of cell mass, metabolites, and antibodies, a well-closed material balance was established. Our results demonstrate the value of coupling on-line OUR measurement and the stoichiometric realations for dynamic nutrient feeding in high cell concentration fed batch cultures. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 440-449 
    ISSN: 0006-3592
    Keywords: transformation capacity ; product toxicity ; oxygenase enzymes ; chlorinated organics ; trichloroethylene ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The degradation of trichloroethylene (TCE), chloroform (CF), and 1,2-dichloroethane (1,2-DCA) by four aerobic mixed cultures (methane, propane, toluene, and phenol oxidizers) grown under similar chemostat conditions was measured. Methane and propane oxidizers were capable of degrading both saturated and unsaturated chlorinated organics (TCE, CF, and 1,2-DCA). Toluene and phenol oxidizers degraded TCE but were not able to degrade CF, 1,2-DCA, or other saturated organics. None of the cultures tested were able to degrade perchloroethylene (PCE) or carbon tetrachloride (CC4). For the four cultures tested, degradation of each of the chlorinated organics resulted in cell inactivation due to product toxicity. In all cases, the toxic products were rapidly depleted, leaving no toxic residues in solution. Among the four tested cultures, the resting cells of methane oxidizers exhibited the highest transformation capacities (Tc) for TCE, CF, and 1,2-DCA. The Tc for each chlorinated organic was observed to be inversely proportional to the chlorine carbon ratio (Cl/C). The addition of low concentrations of growth substrate or some catabolic intermediates enhanced TCE transformation capacities and degradation rates, presumably due to the regeneration of reducing energy (NADH); however, addition of higher concentrations of most amendments reduced TCE transformation capacities and degradation rates. Reducing energy limitations and amendment toxicity may significantly affect Tc measurements, causing a masking of the toxicity associated with chlorinated organic degradation. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 42-52 
    ISSN: 0006-3592
    Keywords: Petunia hybrida ; chemostat cultures ; growth ; true growth yield ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: With glucose-limited continuous cultures of Petunia hybrida six steady states were obtained at specific growth rates varying from 0.0035 to 0.012 h-1 (corresponding with culture residence times varying from 285 to 85 h). The macromolecular and the elemental biomass composition which were determined in four steady states showed no major differences over the range of growth rates examined. During all six steady states specific subtrate and oxygen consumption as well as biomass and extracellular product formation rates were monitored. Moreover the specific activities of the mitochondrial cytochrome and alternative pathway were determined and used to estimate specific adenosine triphosphate (ATP) production rates. Data thus obtained were used in the determination of maintenance and true growth yield parameters. For the maintenance on glucose and ATP values of 0.0070 C-mol/C-mol/h and 0.034 mol/C-mol/h were obtained, respectively. True yields of biomass on glucose and ATP were 0.50 C-mol/C-mol and 0.28 C-mol/mol, respectively. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 26-41 
    ISSN: 0006-3592
    Keywords: nitrate ; nitrite ; denitrification ; kinetics ; T effects ; pH effects ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fundamental kinetic studies on the reduction of nitrate, nitrite, and their mixtures were performed with a strain of Pseudomonas denitrificans (ATCC 13867). Methanol served as the carbon source and was supplied in excess (2:1 mole ratio relative to nitrate and/or nitrite). Nitrate and nitrite served as terminal electron acceptors as well as sources of nitrogen for biomass synthesis. The results were explained under the assumption that respiration is a growth-associated process. It was found that the sequence of complete reduction of nitrate to nitrogen gas is via nitrite and nitrous oxide.It was found that the specific growth rate of the biomass on either nitrate or nitrite follows Andrews inhibitory kinetics and nitrite is more inhibitory than nitrate. It was also found that the culture has severe maintenance requirements which can be described by Herbert's model, i.e., by self-oxidation of portions of the biomass. The specific maintenance rates at 30°C and pH 7.1 were found to be equal to about 28% of the maximum specific growth rate on nitrate and 23% of the maximum specific growth rate on nitrite. Nitrate and nitrite were found to be involved in a cross-inhibitory noncompetitive kinetic interaction. The extent of this interaction is negligible when the presence of nitrite is low but is considerable when nitrite is present at levels above 15 mg/L.Studies on the effect of temperature have shown that the culture cannot grow at temperatures above 40°C. The optimal temperature for nitrate or nitrite reduction was found to be about 38°C. Using an Arrhenius expression to describe the effect of temperature on the specific growth rates, it was found that the activation energy for the use of nitrate by the culture is 8.6 kcal/mol and 7.21 kcal/mol for nitrite. Arrhenius-type expressions were also used in describing the effect of temperature on each of the parameters appearing in the specific growth rate expressions. Studies on the effect of pH at 30°C have shown that the culture reduces nitrate optimally at a pH between 7.4 and 7.6, and nitrite at a pH between 7.2 and 7.3. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 0006-3592
    Keywords: ajmalicine ; Catharanthus roseus ; alkaloid formation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The link between the growth stage and the production stage in a two-stage batch process was investigated using (filtered) inocula from different periods of the stationary phase of the growth cycle. In the production stage, ajmalicine production by Catharanthus roseus in a 3-L stirred tank reactor was induced with a high glucose concentration (80 g/L). Ajmalicine production in cultures started with cells from the late stationary phase was five times higher than in cultures started with cells from the early stationary phase. After transfer to the production stage, cells from the early stationary phase showed a transient increase in respiration and enzyme induction, followed by culture browning. In contrast, cells in the late stationary phase showed a typical induction pattern: constant respiration, and permanent enzyme induction. A striking similarity between the geraniol-10-hydroxylase (G10H) activity and the ajmalicine accumulation profile could be observed in all cultures, suggesting that G 10H regulated ajmalicine production in this investigation. The intracellular nitrate concentration was significantly higher in the inoculum showing a high ajmalicine production than in the inoculum with a low production. Consequently, nitrate may act as a marker for the start of the production stage: as soon as the nitrate is depleted in the growth medium secondary metabolism can be induced. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. ii 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 22-27 
    ISSN: 0006-3592
    Keywords: cDNA copy number ; gene dosage ; recombinant protein production ; posttranslational modification ; BHK ; secretion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The secretion rate of activated protein C (APC) by BHK cells was increased 35-fold by increasing the cDNA copy number per cell from 50 to 240. In this range, the relation between APC secretion and cDNA copy number was not linear and the rate of APC secretion per cDNA copy increased sevenfold. This apparent cooperative effect of multiple cDNA copies could be related to their integration in tandem. For cDNA copy numbers higher than 240, the APC secreation rate per cDNA and per cell decreased dramatically. The γ-carboxylation of glutamic acid residues, a posttranslational modification required for APC biological activity, was also investigated. The proportion of APC that was fully γ-carboxylated decreased as the secretion rate of APC increased. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 557-566 
    ISSN: 0006-3592
    Keywords: polyester fiber ; immobilization ; protein A ; antigen ; antibody ; immunoadsorbent ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Following ozone oxidation of polyester microfibers of 3.5 μm average diameter and 0.83 m2/g specific area, the fiber surface was subjected to graft polymerization of acrylic acid and subsequently immobilized with serologically active proteins including Staphylococcus aureus protein A, a specific antigen, and a specific antibody. The immobilization reaction was mediated by a watersoluble carbodiimide, which allowed formation of a co-valent linkage between the ligand proteins and the grafted poly(acrylic acid)chains. The yields of the immobilized ligand proteins were of the order of 1 mg/g fiber. Their binding affinity and capacity to respective specific proteins were studied in vitro from a buffered solution and serum. It was found that the specific proteins were selectively adsorbed with dissociation constants as low as 1× 10-6 M, suggesting the adsorption to take place through highly specific protein-protein interaction. An addition of serum albumin did not significantly affect the specific binding, regardless of the ligand proteins. The binding capacity ranged from 1 × 10-13 to 1× 10-11 mol/cm2 primarily depending on the surface density of the immobilized ligands and the number of their binding sites per molecule. © 1995 John Wiley & Sons Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 550-556 
    ISSN: 0006-3592
    Keywords: spheroids ; porous and solid microcarriers ; CHO ; controlled release ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The influence of the microcarrier type on the performance of a controlled release process used to produce a recombinant glycosyl-phosphatidylinositol anchored protein was investigated. Chinese hamster ovary (CHO) cells expressing the human melanoma tumor antigen (p97) were cultured in 10% serum on Cultispher-GH porous microcarriers and then, for protein production, maintained in 2% serum. Cells were harvested every 48 h and p97 was recovered at 90 μg/mL and 40% purity. Harvested p97 concentrations were increased by harvestingfrom spheroid (241 μg/mL) and smaller porous microcarrier, Cultispher-G (167 μg/mL) cultures. The low total cell specific p97 production of cells cultured on Cultispher-GH was due to necrosis of cells within the beads, decreased p97 expression of the immobilized cells, dilution by the liquid (up to 40% volume) associated with settled beads, and incomplete recovery of p97 from within the beads. Cells cultured on solid microcarriers, Cytodex-1, had the highest cell viability and cell specific p97 production, It is recommended that a two-stage cyclic harvesting process of cells cultured on small Cultispher-G or on Cytodex-1 beads would minimize protein loss and maximize cell specific protein recovery. © 1995 John Wiley & Sons Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 118-122 
    ISSN: 0006-3592
    Keywords: apoptosis ; bcl-2 ; hybridoma ; cell survival ; antibody productivity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Human bcl-2 DNA was introduced into mouse hybridoma 2E3 cells and expressed at a high level by using BCMGSneo vector, which reportedly amplifies as multiple copies in the cells independently of their chromosomes. The high expression of bcl-2 in BCMGSneo-bcl-2 transfectants was confirmed by western blotting. In batch cultures, the overexpression of bcl-2 raised the maximum viable cell density by 45%, delayed the initiation of apoptosis by 2 days, and prolonged the viable culture period by 4 days. The delayed initiation of apoptosis was detected by emergence of the ladder pattern on DNA electrophoresis and increase of the dead cell number. The bcl-2 transfectants produced lgG1 fourfold per batch culture in comparison with 2E3 cells transfected with BCMGSneo but not with bcl-2: a little less than twofold due to the improved survival of the cells and more than twofold due to the enhanced lgG1 production rate per cell of the bcl-2 transfectants. The method to engineer hybridoma cells genetically with bcl-2 using BCMGSneo vector for increasing viability and productivity would be widely applied for improving antibody productivity of hybridoma cultures. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    ISSN: 0006-3592
    Keywords: glucosylation ; alcohol ; hydrolysis, reverse ; galactoside ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Alkyl β-D-glucosides were synthesized from D-glucose and alcohols by reverse hydrolysis using the commercially available almond β-D-glucosidase in 9:1 (v/v) acetonitrile-water medium. The main characteristics of this enzyme-catalyzed glucosylation were established by using 2-hydroxybenzyl alcohol. The reaction is entirely regio- and stereoselective. The solvent plays a fundamental role because, by decreasing the water concentration in the medium, the shift of the reaction equilibrium toward synthesis is realized without using an excessive amount of alcohol. Nevertheless, a minimum amount of water is necessary to maintain the enzyme activity. In contrast to the use of the enzyme in aqueous medium, the pH of the added water in acetonitrile did not influence the synthesis. Using this procedure, we have conducted systematic glucosylation of numerous alcohols and we have investigated enzyme specificity and alcohol reactivity. The enzyme has a pronounced affinity for the alcohols containing a phenyl group, and enantioselectivity for the aglycon is obtained with 1-phenylethyl alcohol. Moreover, by using almond β-D-glucosidase it was also possible to synthesize alkyl β-D-galactosides. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 139-146 
    ISSN: 0006-3592
    Keywords: fluidized-bed bioreactor ; concentration profile ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A fully predictive mathematical description of a three-phase, tapered, fluidized-bed bioreactor is developed. This mathematical model includes the effects of the tapered bed, variable dispersion coefficient, and variable solid holdup upon the concentration profiles developed in the bed. In addition, the effect of the concentration profile which is developed inside the biocatalyst bead is included by means of an effectiveness factor calculation. Using accepted correlations for the dispersion coefficient and for the liquid, gas, and solid holdup in the bed, the model is fully predictive. The model was found to adequately predict experimental obtained concentration profiles. Then, the model was used to examine the various phase holdups through the bed and the degree to which the dispersion coefficient varied through the bed. The effect of changes in these calculated variables upon the reaction rate is discussed. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 596-608 
    ISSN: 0006-3592
    Keywords: amino acid addition ; protein stability ; protease ; fed-batch ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this work, feeding policies aimed to avoid cellular stress responses as indicated by an increase in ATP-dependent proteolysis are tested. A set of experiments was carried out where glucose, IPTG (inducer), and phenylalanine (rate-limiting precursor) were added gradually in a fed-batch fashion. A significant increase in CAT activity was found compared with pulse-induction. In addition, there was a substantial increase in the rate of CAT synthesis as well as in the final specific CAT activity when phenylatanine and the inducer were added simultaneously. CAT degradation was confirmed through Western blotting analysis. Protease analysis (SDS-GPAGE) indicated lower proteolytic activity for the IPTG and phenylalanine fed-batch cases. GroEL immunoas-says indicated that amplification of stress proteins occurred upon CAT induction. This research impacts the yield of soluble cytoplasmic proteins in Escherichia coli and suggests that metabolically based induction/feeding policies are beneficial. © 1995 John Wiley & Sons Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 585-595 
    ISSN: 0006-3592
    Keywords: biofilm ; wastewater treatment ; airlift reactor ; nitrification ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: For a stable and reliable operation of a BAS-reactor a high, active biomass concentration is required with mainly biofilm-covered carriers. The effect of reactor conditions on the formation of nitrifying biofilms in BAS-reactors was investigated in this article. A start-up strategy to obtain predominantly biofilm-covered carriers, based on the balancing of detachment and a biomass production per carrier surface area, proved tp be very successful. The amount of biomass and the fraction of covered carrier were high and development of nitrification activity was fast, leading to a volumetric conversion of 5 kgN · m-3 · d-1 at a hydraulic retention time of 1h. A 1-week, continuous inoculation with suspended purely nitrifying microorganisms resulted in a swift start-up compared with batch addition of a small number of biofilms with some nitrification activity. The development of nitrifying biofilms was very similar to the formation of heterotrophic biofilms. In contrast to heterotrophic bio-films, the diameter of nitrifying biofilms increased during start-up. The detachment rate from nitrifying biofilms decreased with lower concentrations of bare carrier, in a fashion comparable with heterotrophic biofilms, but the nitrifying biofilms were much more robust and resistant. Standard diffusion theory combined with reaction kinetics are capable of predicting the activity and conversion of biofilms on small suspended particles. © 1995 John Wiley & Sons Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 121-130 
    ISSN: 0006-3592
    Keywords: α-lactalbumin ; whey ; isoelectric precipitation ; calcium complexation ; modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The selective precipitation of α-lactalbumin (α-LA) at a pH around its isoelectric point (4.2) under heat treatment is the basis for a fractionation process of whey proteins. As precipitation is a phenomenon dependent on the protein hydrophobicity, and as the release of the tightly bound calcium occurring at pH around 4 modifies the α-LA hydrophobicity, the specific role of calcium on isoelectric precipitation is investigated. A study of the extent of α-LA precipitation in a whey protein concentrate under various operating conditions of pH, temperature, protein concentration, and calcium content is presented. We propose a mechanism for this phenomenon as a combination of a complexation equilibrium and of an irreversible precipitation, to account for the influence of temperature, α-LA concentration total ionic content, and calcium concentration, and also to estimate the complexation equilibrium constant. © 1995 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 139-146 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; fed-batch ; acetate ; glucose ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A Large bioreactor is an inhomogenous system with concentration gradients which depend on the fluid dynamics and the mass transfer of the reactor, the feeding strategy, the saturation constant, and the cell density. The responses of Escherichia coli cells to short-term oscillations of the carbon/energy substrate in glucose limited fed-batch cultivations were studied in a two-compartment reactor system consisting of a stirred tank reactor (STR) and an aerated plug flow reactor (PFR) as a recycle loop. Short-term glucose excess or starvation in the PFR was simulated by feeding of glucose to the PFR or to the STR alternatively. The cellular response to repeated short-term glucose excess was a transient increase of glucose consumption and acetate formation. But, there was no accumulation of acetate in the culture, because it was consumed in the STR part where the glucose concentration was growth limiting. However, acetate accumulated during the cultivation if the oxygen supply in the PFR was insufficient, causing higher acetate formation. The biomass yield was then negatively influenced, which was also the case if the PFR was used to simulate a glucose starvation zone. The results suggest that short-term heterogeneities influence the cellular physiology and growth, and can be of major importance for the process performance. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 131-138 
    ISSN: 0006-3592
    Keywords: Vitis vinifera ; plant cell culture ; nutrients ; cell division ; growth ; oxygen consumption ; anthocyanins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Vitis vinifera cell suspension cultures carried out in shake flasks were closely examined for biomass growth and cell division in relation to carbohydrate, NH4, NO3PO4, and dissolved oxygen (DO)consumption. After inoculation, the oxygen uptake rate of the cultures measured on-tine was observed to increase continuously to a maximum value of 3.8 mmol O2L-1h-1 at day 7 when cell division ceased and dissolved oxygen reached its lowest level of 17% air saturation. During this first phase of growth, the specific oxygen uptake rate remained constant at ∼0.6 mmol 02 O2 g-1 dw h-1or ∼2.2 μmol O2, (106 cells)-1 h-1 whereas dry biomass concentration increased exponentially from 1.5 to 6.0 g dw L-1. Thereafter, dry biomass concentration increased linearly to ∼14 g dw L-1 at day 14 following nitrate and carbohydrate uptake. During this second phase of growth, the biomass wet-to-dry weight ratio was found to increase in an inverse relationship with the estimated osmotic pressure of the culture medium. This corresponded to inflection points in the dry and wet biomass concentration and packed cell volume curves. Furthermore, growth and nutrient uptake results suggest that extracellular ammonium or phosphate ion availability may limit cell division. These findings indicate that cell division and biomass production of plant cell cultures may not always be completely associated, which suggests important new avenues to improve their productivity. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    ISSN: 0006-3592
    Keywords: arg-gly-asp ; cellulose ; protein production ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The sequence Arg-Gly-Asp (RGD) in extracellular matrix proteins such as fibronectin, collagen, and laminin mediates cell attachment by interacting with proteins of the integrin family of cell surface receptors. A gene fusion encoding the RGD-containing peptide, fused to the C-terminus of a cellulose-binding domain (CBD/RGD), was expressed in Escherichia coli. Cultures produced up to 50 mg of CBD/RGD per liter, most of which was extracellular. It was purified from the culture supernatant by affinity chromatography on cellulose. CBD/RGD promoted the attachment of green monkey Vero cells to polystyrene and cellulose acetate. Attachment was inhibited by small synthetic peptides containing the RGD sequence. CBD/RGD was as effective as collagen in promoting the attachment of Vero cells to Cellsnow™ microcarriers. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 155-164 
    ISSN: 0006-3592
    Keywords: cell debris ; protein recovery ; membranes ; microfiltration ; bacterial lysate ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Protein recovery from a bacterial lysate was accomplished using microfiltration membranes in a flat crossflow filter and in a cylindrical rotary filter. Severe membrane fouling yielded relatively low long-term permeate flux values of 10-4-10-3 cm/s (where I cm/s = 3.6 × 104 L/m2 - h). The permeate flux was found to be nearly independent of transmembrane pressure and to increase with increasing shear rate and decreasing solids concentration. The flux increased with shear to approximately the one-third power or greater for the flat filter and the one-half power or greater for the rotary filter; the stronger dependence for the rotary filter is thought to result from Taylor vortices enhancing the back transport of debris carried to the membrane surface by the permeate flow. The average protein transmission or sieving coefficient was measured at approximately 0.6, but considerable scatter in the transmission data was observed. The largest sieving coefficients were obtained for dilute suspensions at high shear rate. The rotary filter provided higher fluxes than did the flat filter for dilute suspensions, but not for concentrated suspensions. © 1995 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 165-173 
    ISSN: 0006-3592
    Keywords: error vector ; physiological state recognition ; fuzzy inference ; metabolic reaction model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The physiological states with respect to cell growth and ethanol production in a yeast fed-batch culture expressed in linguistic form could be recognized on-line by fuzzy inferencing based on error vectors. The error vector was newly defined here in a macroscopic elemental balance equation. The physiological states for cell growth and ethanol production were characterized by error vectors using many experimental data from fed-batch cultures. Fuzzy membership functions were constructed from the frequency distributions of the error vectors and state recognition was performed by fuzzy inferencing. In particular, an unusual physiological state for a yeast cultivation, in which aerobic ethanol production was accompanied by very low cell growth, could be recognized accurately. According to the results of the state recognition, an energy parameter, the P/O ratio in the metabolic reaction model was adaptively estimated, and the cell growth was successfully evaluated with the estimated P/O. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 174-180 
    ISSN: 0006-3592
    Keywords: ultrafiltration membranes ; protein fouling ; BET measurements ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Membrane morphology is compared to protein depostion under passive adsorption and ultrafiltration conditions. Solute resistance of protein deposits for membranes of varying roughness, structure, and permeability can vary dramatically with operating conditions. Using Brunauer-Emmett-Teller adsorption isotherm (BET), study of the internal area and accessibility of several uttrafiltration membranes to protein deposition allows better understanding of the fouling mechanisms and interpretation of adsorbed protein quantities. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 181-185 
    ISSN: 0006-3592
    Keywords: insulin ; cell growth ; antibody production ; glucose metabolism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Insulin is often included in serum-free media for animal cell cultivation. However, the necessity of insulin for a specific cell line is rather uncertain. In this article we report the effects of insulin on the cultivation of a hybridoma cell line in a serum-free medium. It was found that insulin affected neither the cell growth nor the antibody production. The specific growth rate and specific antibody production rate were very similar in the cultures with or without insulin. However, the presence of insulin affected the nutrient consumption rate and cell metabolism. Including insulin in the medium resulted in a higher specific glucose consumption rate, a shorter exponential growth stage, and a lower final antibody concentration. The elimination of insulin from the medium allowed antibody to accumulate to a concentration substantially higher than that in the insulin-containing cultuvre. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 703-712 
    ISSN: 0006-3592
    Keywords: biofilm modeling ; detachment ; porous media ; biobarriers ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A packed bed biofilm reactor inoculated with pure culture Pseudomonas aeruginosa was run under high substrate loading and constant flow rate conditions. The 3.1-cm-diameter cylindrical reactor was 5 cm in length and packed with 1-mm glass beads. Daily observations of biofilm thickness, influent and effluent glucose substrate concentration, and effluent dissolved and total organic carbon were made during the 13-day experiment. Biofilm thickness appeared to rech quasi-steady-state condition after 10 days. A published biofilm process simulation program (AQUASIM) was used to analyze experimental data. Comparison of observed and simulated variables revealed three distinct phases of biofilm accumulation during the experiment: an initial phase, a growth phase, and a mature biofilm phase. Different combinations of biofilm and mass transport process variables were found to be important during each phase. Biofilm detachment was highly correlated with shear at the biofilm surface during all three phases of biofilm development. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 1-11 
    ISSN: 0006-3592
    Keywords: Penicillium chrysogenum ; physiology ; image analysis ; differentiation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Although filamentous microorganisms are widely used in industrial fermentation processes, their growth and differentation are not yet fully understood, because their biomass is structured, and therefore difficult to descrbie and to quantify. This lack of appropriate tools can hinder the optimization and control of the fermentation. A quantitative image analysis method was therefore developed for characterizing the physiology of the penicillin-producing mold Penicillium chrysogenum. This method is based on a differntial staining procedure showing six physiological states: growing material, three differentiated states characterzied by an increasing granulation, a highly vacuolized state, and dead segments having lost their cytoplasm. The image analysis software, with versions written for monochrome and color images, consisted of a semiautomatic binary mask computation step and a fully automatic segmentation step based on a fuzzy classification. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 12-16 
    ISSN: 0006-3592
    Keywords: hexopyranoside:cytochrome c oxidoreductase ; disaccharide oxidation ; oxidation ; kinetic model ; fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Disaccharides were microbaially transformed to their corresponding 3-keto-derivatives by resting cells of Agrobacterium tumefaciens NCPPB 396. The kinetics and yield of this highly specific oxidation depend on several factors. The oxygen concentration especially has a major influence on the production of 3-keto-derivatives and was investigated kinetically with respect to low stationary oxygen concentrations in solution. Experiments showed unconventional results that conflicted with normal Michaelis-Menten kinetics. A kinetic model was developed and the kinetic constants were calculated. The model and experimental data for sucrose, maltose, iso-maltulose (palatinose), and leucrose are in good agreement with each other. Initial reaction rates with different sugars using constant oxygen concentrations resulted in a Michaelis-Mentent type function. The complete kinetics, including the effect of disaccharide and oxygen concentrations, are presented. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 592-600 
    ISSN: 0006-3592
    Keywords: Acidianus brierleyi ; pyrite ; bioleaching ; acidophilic thermophile ; metal recovery ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The kinetics of bioleaching of pyrite (FeS2) by the acidophilic thermophilic bacterium Acidianus brierleyi was studied in a well-mixed batch reactor. Experiments were done at 65°C and pH 1.5 on adsorption of A. brierleyi onto pyrite particles, liquid-phase oxidation of ferrous iron by A. brierleyi, and microbial leaching of pyrite. The adsorption of A. brierleyi was a fast process; equilibrium was attained within the first 30 min of exposure to pyrite. The adsorption equilibrium data were well correlated with the Langmuir isotherm. The oxidation of ferrous iron was markedly accelerated in the presence of A. brierleyi, and the growth yield on ferrous iron was determined. The bioleaching of pyrite by A. brierleyi was found to take place with a direct attack by adsorbed cells on the surface of pyrite, the chemical leaching of pyrite by ferric iron being insignificant. Rate data collected under a wide variety of operating variables were analyzed to determine kinetic and stoichiometric parameters for the microbial pyrite leaching. The specific growth rate on pyrite for A. brierleyi was about four times that for the mesophilic bacterium, Thiobacillus ferrooxidans, whereas the growth yields on pyrite for the two microbes were approximately equal to one another in magnitude. A comparison of A. brierleyi with T. ferrooxidans for pyrite leachability demonstrated the thermophile to be much more effective. © 1995 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 606-613 
    ISSN: 0006-3592
    Keywords: chromium reduction ; coculture ; Eschericia coli ; Pseudomonas pufida ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Based on the kinetics of Cr(VI) reduction by Escherichia coli ATCC 33456 and phenol degradation by Pseudomonas putida DMP-1, a mathematical model is developed to describe simultaneous Cr(VI) reduction and phenol degradation in the coculture of the two species. The developed model incorporates the toxicity effects of Cr(VI) and phenol on phenol degradation and Cr(VI) reduction in the coculture. The model illustrates the inhibitory effects of phenol on Cr(VI) reduction and Cr(VI) toxicity toward phenol degradation. The model also reveals the recoveries of the activities of the repressed bacterial cells with continuous Cr(VI) reduction and phenol degradation in the coculture. The model is capable of predicting simultaneous Cr(VI) reduction and phenol degradation within a broad range of Cr(VI) and phenol concentrations and under an appropriate composition of populations. However, the model simulates lower concentrations of phenol than experimental observations once Cr(VI) is reduced to a low level (〈7 mg/L). The model simulation for Cr(VI) also deviates from experimental data when P. putida is outnumbered by E. coli by a ratio of 1:5. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 625-630 
    ISSN: 0006-3592
    Keywords: biodegradation ; nitrobenzene ; hybrid strain ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The biodegradation of nitrobenzene was attempted by using Pseudomonas putida TB 103 which possesses the hybrid pathway combining the tod and the tol pathways. Analysis of the metabolic flux of nitrobenzene through the hybrid pathway indicated that nitrobenzene was initially oxidized to cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene by toluene dioxygenase in the tod pathway and then channeled into the tol pathway, leading to the complete biodegradation of nitrobenzene. A crucial metabolic step redirecting the metabolic flux of nitrobenzene from the tod to the tol pathway was determined from the genetic and biochemical studies on the enzymes involved in the tol pathway. From these results, it was found that toluate-cis-glycol dehydrogenase could convert cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene to catechol in the presence of NAD+ with liberation of nitrite and the reduced form of NAD+ (NADH) into the medium. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 631-638 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; fermentation ; on-line simulation ; state estimation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In order to study and control fermentation processes, indirect on-tine measurements and mathematical models can be used. In this article we present a mathematical on-line model for fermentation processes. The model is based on atom and partial mass balances as well as on equations describing the acid-base system. The model is brought into an adaptive form by including transport equations for mass transfer and unstructured expressions for the fermentation kinetics. The state of the process, i.e., the concentrations of biomass, substrate, and products, can be estimated on-line using the balance part of the model completed with measurement equations for the input and output flows of the process. Adaptivity is realized by means of on-line estimation of parameters in the transport and kinetic expressions using recursive regression analysis. These expressions can thus be used in the model as valid equations enabling prediction of the process. This makes model-based automation of the process and testing of the validity of the measurement variables possible. The model and the on-line principles are applied to a 3.5-L laboratory tormentor in which Saccharomyces cerevisiae is cultivated. The experimental results show that the model-based estimation of the state and the predictions of the process correlate closely with high-performance liquid chromatography (HPLC) analyses. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 451-460 
    ISSN: 0006-3592
    Keywords: biosorption ; cadmium ; copper ; zinc ; two-systems ; ascophyllum nodosum ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A biosorbent prepared from Ascophyllum nodosum seaweed biomass, FCAN2, was examined for its sorption capacity. Equilibrium batch sorption studies were performed using two-matal systems containing either (Cu + Zn), (Cu + Cd), or (Zn + Cd). In the evaluation of the two-metal sorption system performance, simple isotherm curves had to be replaced by three-dimensional sorption isotherm surfaces. In order to describe the isotherm surfaces mathematically, three Langmuir-type models were evaluated. The apparent one-parameter Langmuir constant (b) was used to quantify FCAN2 “affinity” for one metal in the presence of another one. The uptake of Zn decreased drastically when Cu or Cd were present. The uptake of Cd wasmuch more sensitive to the presence of Cu than to that of Zn. The presence of Cd and Zn alter the “affinity” of FCAN2 for Cu the least at high Cu equilibrium concentrations. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal (bio)sorption inhibition due to the influence of a second metal. © 1995 John Wiley & Sons Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 0006-3592
    Keywords: Escherichia coli ; light emission LamB fusions ; IgG-binding protein A domains ; chimeric operon ; Vibrio fischeri lux genes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fusion proteins between LamB and immunoglobulin G binding domains of the Staphylococcus aureus protein A (SPA) have previously been shown to be located in the outer membrane and to convey immunoglobulin binding activity to intact Escherichia coli cells. However, the induced synthesis (tac promoter dependent) of these proteins severely impaired light production from the Vibrio fischeri lux operon present on a compatible plasmid and transcribed from its own control elements. Coordinate inducible expression of both phenomena, light emission and synthesis of LamB or LamB-SPA fusions, could be achieved by construction of artificial operons, joining all but luxl of the rightward lux operon to the 3′ end of the LamB-spa expression cassettes, under transcriptional control of the tac promoter. Biotechnological applications are discussed. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 681-698 
    ISSN: 0006-3592
    Keywords: stoichiometry ; biomass yield ; product yield ; metabolic fluxes ; Saccharomyces cerevisiae ; Candida utilis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Using available biochemical information, metabolic networks have been constructed to describe the biochemistry of growth of Saccharomyces cerevisiae and Candida utilis on a wide variety of carbon substrates. All networks contained only two fitted parameters, the P/O ratio and a maintenance coefficient. It is shown that with a growth-associated maintenance coefficient, K, of 1.37 mol ATP/ C-mol protein for both yeasts and P/O ratios of 1.20 and 1.53 for S. cerevisiae and C. utilis, respectively, measured biomass yields could be described accurately. A metabolic flux analysis of aerobic growth of S. cerevisiae on glucose/ethanol mixtures predicted five different metabolic flux regimes upon transition from 100% glucose to 100% ethanol. The metabolic network constructed for growth of S. cerevisiae on glucose was applied to perform a theoretical exercise on the overproduction of amino acids. It is shown that theoretical operational product yield values can be substantially lower than calculated maximum product yields. A practical case of lysine production was analyzed with respect to theoretical bottlenecks limiting product formation. Predictions of network-derived irreversibility limits for Ysp (μ) functions were compared with literature data. The comparisons show that in real systems such irreversibility constraints may be of relevance. It is concluded that analysis of metabolic network stoichiometry is a useful tool to detect metabolic limits and to guide process intensification studies. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 483-491 
    ISSN: 0006-3592
    Keywords: fusion protein ; protein purification ; affinity chromatography ; cation exchange chromatography ; L-asparagine ; α-human natriuretic peptide ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel fusion protein designed to facilitate protein purification was expressed in Escherichia coli and purified separately by two different chromatography methods. L-Asparaginase from Erwinia chrysanthemi is fused to the N-terminus of a model peptide, α-human atrial natriuretic peptide (α-hANP). L-Asparaginase was chosen because of its selective affinity for L-asparagine and because of its unusually high isoelectric point(8.6). A gene construction without the L-asparaginase native signal sequence caused expression at a level of 8% of total cell protein, while gene construction with the native signal sequence resulted in over five time less expression. The hybrid protein expressed without the signal sequence was purified from clarified cell lysate byeither L-asparagine affinity chromatography or cation exchange chromatography. After digestion of the fusion protein with factor Xa protease, a peptide with a molecular weight corresponding to the theoretical molecular weight of α-hANP was observed by coupled HPLC/mass spectrometry. © 1995 John Wiley & Sons Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 0006-3592
    Keywords: diffusion ; gel ; alginate ; lactose ; lactic acid ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A non-steady-state method has been used for determining the effective diffusion coefficient, De, and a distribution constant, Ki, of small molecules in alginate gel beads. A mathematical model based on Pick's law and includingexternal film diffusion resistance describe the diffusion process. Criticalexperimental parameters for the estimation of De and Ki, for both one- and two-parameter methods were the initial solute concentration in the bulk liquid, the void fraction inthe reactor, and the experimental starting point. In our analysis, the two-parameter method is preferable. Incorporation of an estimate of the film resistance into the overall model increased the estimated values of De significantly and improved the stability of the term over a range of reactor agitation rates. © 1995 John Wiley & Sons Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 492-500 
    ISSN: 0006-3592
    Keywords: alginate ; diffusion ; gel ; saccharides ; organic acids ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effective diffusion coefficient, De, and the distribution constant, Ki, for selected mono- and disaccharides and organic acids were determined in homogeneous calcium-alginate gel with and without entrapped bacteria. Results were obtained from transient concentration changes in well-stirred solutions of limited volume, in which the gel beads were suspended. The effective diffusioncoefficients and the distribution constants were estimated by fitting mathematical model predictions to the experimental data using a nonlinear model fitting program (MODFIT). Both single solute diffusion and multiple solute diffusion were performed. A small positive effect was obtained onthe values of De for the system of multiple solute diffusion; however, the values of Ki were not significantly influenced. For the nine solutes tested, De for 2% Ca-alginate gel beads was found to be approximately 85% of the diffusivity measured in water. The effects on De and Ki, for lactose and lactic acid were determined for variations of alginate concentration, pH, temperature, and biomass content in the beads. De decreased linearly for both lactose and lactic acid with increasing cell concentration in the Ca-alginate gel. Ki, was constant for both lactose and lactic acid with increasing cell concentration. De was significantly lower at pH 4.5 than at pH 5.5 and 6.5 for both lactose and lactic acid. Furthermore, De seemed to decrease with increased alginate concentration in the range of 1% to 4%. The diffusion rate increased with increasing temperature, and the activation energy for the diffusion process for both lactose and lactic acid was constant in the temperature range tested. © 1995 John Wiley & Sons Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 737-744 
    ISSN: 0006-3592
    Keywords: biofilm ; mass transfer coefficient ; microelectrode ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Local mass transfer rates for an electrochemically formed microsink in an aerobic biofilm was measured by a mobile microelectrode using limiting current technique. Mass transfer coefficients varied both horizontally and vertically in the biofilm. The results implied the existence of an irregular biofilm structure consisting of microbial cell clusters surrounded by tortuous water channels. An unexpected increase of the local mass transfer coefficient just above the biofilm surface suggested the existence, of local flow instability in this region. As expected, the influence of bulk flow velocity on the local mass transfer rate decreased with increasing depth into the biofilm. Mass transfer coefficients fluctuated significantly inside microbial cell clusters, suggesting the existence of internal channels through which liquid could flow. A new conceptual model of biofilm microbial cluster structure is proposed to account for such biofilm microstructure irregularities. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 401-405 
    ISSN: 0006-3592
    Keywords: insect cells ; microfiltration ; hollow fiber ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An efficient method was developed for media separation and cell collection for eukaryotic cells growing in suspension. The method is based on tangential flow microfiltration using an open channel arrangement in a hollow fiber configuration. Best results (highest processing flux rate) for polysulfone hollow fibers were obtained using fibers with internal diameter of 0.75 mm, 0.45 μm pore size, and a cell suspension flow at a shear rate of 14000 s-1 (0.032 L/min per fiber). A flux rate of 500 L/m2 h can be obtained by maintaining the surface area/cell ratio at 0.05 m2/10 L of cells at a concentration of 2.5 × 106 cells/mL. Forty liters of infected insect cells can be concentrated 10 times in 20 min without affecting cell viability. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 386-400 
    ISSN: 0006-3592
    Keywords: microfiltration ; yeast ; filtration ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To develop a highly efficient cell harvest step under time constraint, a novel rotating disk dynamic filtration system was studied on the laboratory scale (0.147-ft.2 nylon membrane) for concentrating recombinant yeast cells containing an intracellular product. The existing cross-flow microfiltration method yielded pseudo-steady state flux values below 25 LMH (L/m2. h) even at low membrane loadings (10 L/ft.2). By creating high shear rates (up to 120,000-1) on the membrane surface using a rotating solid disk, this dynamic filter has demonstrated dramatically improved performance, presumably due to minimal cake buildup and reduced membrane fouling. Among the many factors investigated, disk rotating speed, which determines shear rates and flow patterns, was found to be the most important adjustable parameter. Our experimental results have shown that the flux increases with disk rotating speed, increases with transmembrane pressure at higher cell concentrations, and can be sustained at high levels under constant flux mode. At a certain membrane loading level, there was a critical speed below which it behaved similarly to a flat sheet system with equivalent shear. Average flux greater than 200 LMH has been demonstrated at 37-L/ft.2 loading at maximum speed to complete sixfold concentration and 15-volume diafiltration for less than 100 min. An order of magnitude improvement over the crossflow microfiltration control was projected for large scale production. This superior performance, however, would be achieved at the expense of additional power input and heat dissipation, especially when cell concentration reaches above 80 g dry cell weight (DCW)/L. Although a positive linear relationship between power input and dynamic flux at a certain concentration factor has been established, high cell density associated with high viscosity impacted adversely on effective average shear rates and, eventually, severe membrane fouling, rather than cake formation, would limit the performance of this novel system. © 1995 John Wiley & Sons, Inc.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 187-195 
    ISSN: 0006-3592
    Keywords: interesterification reaction ; surfactant-modified lipase ; modified lipase Saiken ; triglycerides ; fatty acids ; biocatalyst ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The lipase-catalyzed intresterification of triglycerides and fatty acids in n-hexane was studied. Initially, lipase Saiken was modified with a surfactant of sorbitan esters so that its dispersibility in hydrophobic organic media was improved. The surfactant-modified lipase formed in the modification process carried out in a buffer solution has 1,3-positional specificity and predominantly catalyzed the interesterification reaction in a microaqueous n-hexane system. The modification technique converted inactive lipases to very active biocatalysts for the interesterification of triglycerides and fatty acids. The pH and the weight ratio of surfactant to enzyme used during the lipase modification process have shown significant effects in determining the recoveries of the protein and enzyme activity from the buffer solution, the protein content of the modified lipase complex after being freeze dried, and the interesterification activity of the complex. The water content in the reaction solution has strongly influenced the enzyme activity as well as the distribution of the products. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 379-386 
    ISSN: 0006-3592
    Keywords: propionic acid fermentation ; Propionibacterium acidipropionici ; immobilized cell bioreactor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Recycle batch fermentations using immobilized cells of Propionibacterium acidipropionici were studied for propionate production from whey permeate, de-lactose whey permeate, and acid whey. Cells were immobilized in a spirally wound fibrous sheet packed in a 0.5-L column reactor, which was connected to a 5-L stirred tank batch fermentor with recirculation. The immobilized cells bioreactor served as a breeder for these recycle batch fermentations. High fermentation rates and conversions were obtained with these whey media without nutrient supplementation. It took ∼55 h to ferment whey permeate containing ∼45 g/L lactose to ∼20 g/L propionic acid. Higher propionate concentrations can be produced with various concentrated whey media containing more lactose. The highest propionic acid concentration obtained with the recycle batch reactor was 65 g/L, which is much higher than the normal maximum concentration of 35 to 45 g/L reported in the literature. The volumetric productivity ranged from 0.22 g/L · h to 0.47 g/L · h, depending on the propionate concentration and whey medium used. The corresponding specific cell productivity was 0.033 to 0.07 g/L · g cell. The productivity increased to 0.68 g/L · h when whey permeate was supplemented with 1% (w/v) yeast extract. Compared with conventional batch fermentation, the recycle batch fermentation with the immobilized cell bioreactor allows faster fermentation, produces a higher concentration of product, and can be run continually without significant downtime. The process also produced similar fermentation results with nonsterile whey media. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 398-405 
    ISSN: 0006-3592
    Keywords: anaerobic digestion ; full-scale ; granule activity ; multiplate reactor ; solid retention ; whey permeate ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A 450-m3 multiplate anaerobic reactor (MPAR) has been started-up in April 1992 for treating wastewater (whey permeate and domestic wastewater) at the Nutrinor (Lactel) cheese factory in Chambord (Québec, Canada). The MPAR consists of four superimposed sections. The liquid flows upwards from one section to the next, while the gas is collected below each plate and evacuated through side-outlets. The wastewater is concurrently distributed at the bottom of the first, second, and third sections, as 50%, 33%, and 17% of the total influent stream, respectively. Granular anaerobic sludge at an initial concentration of 30 kg of volatile suspended solids (VSS) per cubic meter of reactor liquid volume was used to inoculate the reactor. Under normal operation of the factory, the chemical oxygen demand (COD) concentration of the influent ranged from 20 to 37 kg COD m-3. The reactor organic loading rate (OLR) fluctuated between 9 and 14.7 kg COD m-3 d-1 for hydraulic retention times (HRT) maintained between 55 and 68 h. At the highest OLR, the MPAR showed an efficiency of 98% and 92% for soluble and total COD removal, respectively, and a methane production rate averaging around 4 m3 m-3 d-1.Biomass-specific activities ranged between 7 and 51, 1.3 and 8.5, 5.3 and 12.2, 60 and 119, and 119 and 211 mmol g-1 VSS d-1 for glucose, propionate, acetate, formate, and hydrogen, respectively. Average equivalent-diameter of the granules was around 0.65 mm. The MPAR reactor generally showed a large capacity for solid retention with a biomass content between 32 and 37 kg VSS m-3. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 99-108 
    ISSN: 0006-3592
    Keywords: microemulsions, nonionic ; protein, separations ; sorbitan esters ; alkyl ethoxylates ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this article, the extraction of cytochrome c utilizing various nonionic surfactant microemulsions has been tested to determine the effect of surfactant structure on protein partitioning. Surfactants tested include a linear alcohol ethoxylate (Neodol 91-2.5), two alkyl phenol ethoxylates (lgepal CO-520, Trycol 6985), and a series of alkyl sorbitan esters that are either ethoxylated (Tweens) or un-ethoxylated (Spans). Initial attempts to extract hemoglobin into Neodol 91-2.5 Winsor II microemulsions (oil-continuous) appeared successful based on heme estimation. Careful analysis showed that the hemoglobin had dissociated prior to extraction and that only the heme was extracted with false positive results. In fact, Neodol 91-2.5 microemulsions were unable to extract a variety of proteins with differing biophysical properties. Among all the other nonionic surfactant microemulsions tested only those made using sorbitan esters extracted significant amounts of cytochrome c. The partition coefficients achieved in this study are more than an order of magnitude higher than that seen previously in the literature for comparable sorbitan systems. However, this partition coefficient is extremely sensitive to ionic strength. At an ionic strength as low as 0.001 M, the partition coefficient is reduced to that seen in previous studies. We have found that protein partitioning in sorbitan ester microemulsions is not a function of water content. In addition, extraction is not a function of either alkyl chain length, or polyethylene oxide molecular weight. Hence, the sorbitan group appears to have an important role in extraction, possibly through a weak electrostatic protein-surfactant interaction. © 1995 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 132-138 
    ISSN: 0006-3592
    Keywords: centrifuge ; disk stack ; mammalian cell separation ; hybridoma cells ; cell harvest ; debris ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A prototype disc stack centrifuge was tested for the separation of mammalian cell cultures from 80- and 2000-L fermentations. The clarification capacity for mammalian cells was excellent, but some smaller particles remained in the supernatant and reduced its usefulness for downstream processing. In order to identify the source of such particle formation, several parameters were assessed and minimum particle size for separation was calculated. An analysis of particle distribution was performed. Temperature and pressure effects inside the centrifuge bowl were measured. Some modifications of mechanical engineering can be suggested for the improvement of the use of standard disc stack centrifuges for mammalian cells. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 147-158 
    ISSN: 0006-3592
    Keywords: CHO cell ; cell aggregation ; recombinant human interferon-γ ; mammalian cell culture ; cell culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The Chinese hamster ovary (CHO) cell line has great commercial importance in the production of recombinant human proteins, especially those for therapeutic use. Much attention has been paid to CHO cell population physiology in order to define factors affecting product fidelity and yield. Such studies have revealed that recombinant proteins, including human interferon-γ (IFN-γ), can be heterogeneous both in glycosylation and in proteolytic processing. The type of heterogeneity observed depends on the growth physiology of the cell population, although the relationship between them is complex. In this article we report results of a cytological study of the CHO320 line which expresses recombinant human IFN-γ. When grown in suspension culture, this cell line exhibited three types of heterogeneity: (1) heterogeneity of the production of IFN-γ within the cell population, (2) heterogeneity of the number of nuclei and mitotic spindles in dividing cells, and (3) heterogeneity of cellular environment. The last of these arises from cell aggregates which form in suspension culture: Some cells are exposed to the culture medium; others are fully enclosed within the mass with little or no direct access to the medium. Thus, live cells producing IFN-γ are heterogeneous in their environment, with variable access to O2 and nutrients. Within the aggregates, it appears that live cells proliferate on a dead cell mass. The layer of live cells can be several cells deep. Specific cell-cell attachments are observed between the living cells in these aggregates. Two proteins, known to be required for the formation of certain types of intercellular junctions, spectrin and vinculin, have been localized to the regions of cell-cell contact. The aggregation of the cells appears to be an active process requiring protein synthesis. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 144-148 
    ISSN: 0006-3592
    Keywords: serum-free cell culture ; cell adhesion ; cell growth ; fibroblast cell ; biosignal ; immobilization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Insulin or albumin was immobilized on collagen beads using water-soluble carbodiimide. Adhesion of STO mouse fibroblast cells onto the beads decreased with increasing the amount of immobilized proteins. Growth of the cells was remarkably accelerated on the insulinimmobilized collagen beads, which can be used for serum-free cell culture. The growth acceleration became larger with increasing the amount of immobilized insulin, while it became smaller with increasing the amount of immobilized albumin. In addition, the immobilized insulin more strongly accelerated the cell growth than free insulin plus collagen beads. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995) 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 205-211 
    ISSN: 0006-3592
    Keywords: monoclonal antibodies ; fermentation ; fluidized bed adsorption ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To achive the coarse purification of a monoclonal antibody from whole hybridoma fermentation broth a fluidized bed cation exchange process was used. The procedure consisted of application of the crude sample and washing of the bed in a fluidized mode and elution in a fixed bed mode. A completely clarified eluate was obtained with purification factors between 4 and 8 and a concentration of the desired product (monoclonal antibody) by a factor of more than 3 was achived. Thus, a combination of the three early steps of the downstream process clarification, concentration and coarse purification was possible. Two different materials were tested: a commercially available agarose-based matrix (Stream-line-SP), and a self-derivatized material based on controlled-pore glass (Bioran). Initial experiments were performed to describe the fluidization of the glass material. Comparison with the agarose material showed several differences, the agarose matrix allowing liquid flow closer to plug flow than the glass material. Increased backmixing in the liquid phase was detected when fluidizing the glass adsorbent compared with the agarose-based matrix. Despite this fact, comparison of the two materials with respect to antibody binding and elution demonstrated a similar performance. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    ISSN: 0006-3592
    Keywords: methanotroph ; methane monooxygenase ; nitrogenase ; hydrogenase ; batch culture conditions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Batch culture conditions were established for the formation of H2-driven whole-cell soluble or particulate methane monooxygenase (sMMO or pMMO) activity in the obligate methanotroph, Methylosinus trichosporum Ob3b, to expand its potential uses in groundwater bioremediation and the production of specific chemicals. Addition of either Ni and H2 to a nitrate-containing minimal salts growth medium or Ni and Mo to a nitrate-lacking growth medium (induces a nitrogenase that generates intracellular H2) markedly enhanced both the hydrogenase and the accompanying washed-cell H2-driven MMO activities of shake-flask cultured cells. For sMMO containing cells, H2 provided in vitro reducing power for the oxidation of chlorinated solvents such as chloroform and trichloroethylene. Cell cultivations under N2-fixing conditions in a 5-L bioreactor, however, required an initial nitrate concentration of at least 1 to 2 mM to achieve high biomass yields (5 to 7 g of dry cell wt/L) for cells producing H2-driven sMMO or pMMO activity. Elevation of the initial medium nitrate concentration to 20 mM shortened the culture time for pMMO producing cells by 40%, yet still generated an equivalent growth yield. High nitrate also shortened the culture time for sMMO containing cells by ∼25%, but it lowered their biomass yield by 26%. Upon storage for 5 weeks at room temperature, washed resting-state cells retained 90% and 70% of their H2-driven sMMO and pMMO activity, respectively. This makes their practical use quite feasible. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 276-278 
    ISSN: 0006-3592
    Keywords: enzymic peptide synthesis ; solvent free system, chymotrypsin ; thermolysin ; peptides ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Thermolysin-catalyzed (EC 3.4.24.4) and chymotrypsin-catalyzed (EC 3.4.21.1) peptide synthesis reactions were accomplished without any organic solvent in the presence of low amounts of water under sonication and fluidization. The systems used are considered to be microaqueous solvent-free ones. The influence of several reaction parameters, such as time, the amount of enzyme, the amount of water in free form or bound as hydration water, and the N/C component ratio, on the vield of the thermolysin-catalyzed synthesis of Z-Phe-Leu-NH2 (up to 87% yield) was investigated in a sonicated system. Besides Z-Phe-Leu-NH2, the tripeptide derivatives Ac-Xaa-Trp-Leu-NH2, (Xaa = Gly, Ala) were also obtained in good yields of 79 and 71% respectively. In the latter case, no hydrolytic side reactions were observed. Using a fluidized-bed reactor, chymotrypsin- and thermolysin-catalyzed syntheses of N-protected di- and tripeptide amides could be perfromed with yields in the range of 10 to 40%. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 268-275 
    ISSN: 0006-3592
    Keywords: poly(D-3-hydroxybutyrate) ; P(3HB) ; Alcaligenes eutrophus ; gas explosion ; autotroph ; hydrogen oxidizing bacterium ; carbon dioxide fixation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Hydrogen-oxidizing bacterium, Alcaligenes eutrophus autotrophically produces biodegradable plastic material, poly(D-3-hydroxybutyrate), P(3HB), from carbon dioxide, hydrogen, and oxygen. In autotrophic cultivation of the microorganism, it is essential to eliminate possible occurrence of gas explosions from the fermentation process. We developed a bench-plant scale, recycled-gas, closed-circuit culture system equipped with several safety features to perform autotrophic cultivation of A. eutrophus by maintaining the oxygen concentration in the substrate gas phase below the lower limit for a gas explosion (6.9%). The culture vessel utilized a baskettype agitator, resulting in a KL a value of 2970 h-1. Oxygen gas was also directly fed to the fermentor separately from the other gases. As a result, 91.3 g · dm-3 of the cells and 61.9 g · dm-3 of P(3HB) were obtained after 40 h of cultivation under this oxygen-limited condition. The results compared favorably with those reported for mass production of P(3HB) by heterotrophic fermentation. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 292-303 
    ISSN: 0006-3592
    Keywords: fluxes ; intracellular fluxes ; hybridoma cells ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Intracellular fluxes are important in defining cellular physiology and its changes in response to environmental variations. Stoichiometric balances combined with extra cellular metabolite measurements were applied to the estimation of intracellular fluxes and the study of energy metabolism in the hybridoma cell line ATCC CRL 1606. Redundant measurements allowed the evaluation of the consistency of the stoichiometry, measurements, and pseudo-steady-state assumption leading to refinement of the assumed biochemistry and identification of measurement errors. To validate the flux estimates, two batch experiments were performed with glucose labeled in the 1 position with 13C. The distribution of 13C in secreted lactate was measured via nuclear magnetic resonance spectroscopy (NMR) and compared to that predicted from the estimated intracellular fluxes. There was good agreement between the measured and estimated isotope distributions, demonstrating the validity of the flux estimates obtained from stoichiometric balances. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 366-373 
    ISSN: 0006-3592
    Keywords: enzymatic hydrolysis ; cellulase ; polyoxyalkylene ; adsorption ; reactive two-phase partition ; solubilization in organic solvent ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cellulase was modified with amphilic copolymers made of α-allyl-ω-methoxy polyoxyalkylene (POA) and maleic acid anhydride (MAA) to improve the cellulose hydrolytic reactivity and cellulase separation. Amino groups of the cellulase molecule are covalently coupled with the MAA functional groups of the copolymer. At the maximum degree of modification (DM) of 55%, the modified cellulase activity retained more than 80% of the unmodified native cellulase activity. The modified cellulase shows greater stability against temperature, pH, and organic solvents, and demonstrated greater conversion of substrate than native cellulase does. Cellulase modification is also useful for controlling strong adsorption of cellulase onto substrate. Moreover, cellulase modified with the amphiphilic copolymer displays different separation characteristics which are new. One is a reactive two-phase partition and another is solubility in organic solvents. It appears that these characteristics of modified cellulase work very effectively in the hydrolysis of cellulose as a total system, which constitutes the purification of cellulase from culture broth, hydrolysis of cellulose, and recovery of cellulase from the reaction mixture. © 1995 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 374-378 
    ISSN: 0006-3592
    Keywords: cell culture ; patterened surfaces ; cell adhesion ; hydrogel ; polyHEMA ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Chinese hamster ovary (CHO) cells were attached to tiny adhesive sites in poly-2-hydroxyethyl methacrylate(polyHEMA-) coated glass, and their divison properties were examined. The adhesive sites were produced by placing a metal mask, containing 8-μm-diameter holes arranged in a regular pattern, on top of the coated glass and exposing the sandwich to glow discharge treatment. This treatment produced an ordered array of circular cavities in the polyHEMA down to the glass. These adhesive sites were smaller in diameter than a newborn CHO cell, so that, upon division, there would theoretically be room for only one of the two new daughter cells to remain attached. It was found that individual CHO cells attached to, and grew upon, the sites, and that division normally resulted in the releas of one of the two new daughters. It is concluded that this culture technique has applications in research on the mammalian cell cycle, cell partitioning, and cellular senescence. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 406-414 
    ISSN: 0006-3592
    Keywords: chymotrypsin ; differential scanning calorimetry ; ligands ; lipase ; organic media ; sorbitol ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of the addition of sorbitol on the activity and stability of enzymes was examined by monitoring transesterification reactions performed in organic media at various water activities (aw = 0.08 to 0.97). Lipases from Chromobacterium viscosum and Candida rugosa immobilized on celite, and chymotrypsin, free or immobilized on celite, were used. When the sorbitol-containing enzymes were employed, higher reaction rates and less hydrolysis were observed. Immobilization of chymotrypsin resulted in high activity and operational stability, while the nonimmobilized enzyme was stable only in the presence of sorbitol. The activity of all preparations diminished after washing them with pyridine to remove sorbitol. Furthermore, severe stability problems occurred in the preparations lacking sorbitol. Sorbitol treatment, even after removal of the sorbitol itself, improved the activity of nonimmobilized chymotrypsin relative to the washed control. On the other hand, washing to remove sorbitol had a negative effect on the activity of both coimmobilized lipase and coimmobilized chymotrypsin. Addition of a substrate analogue, N-acetyl-L-phenylalanine, to chymotrypsin yielded a preparation that exhibited higher activity than both the control and its sorbitol-containing counterpart. Differential scanning calorimetry measurements revealed that the chymotrypsin-sorbitol complex was stable against thermal denaturation, undergoing transition at a high temperature (89°C). The transition temperatures of the substrate-containing chymotrypsin and of the control were identical (72°C). © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 415-425 
    ISSN: 0006-3592
    Keywords: plant cell suspension culture ; capillary shear loop ; Morinda citrifolia ; shear susceptibility ; morphology ; stirred tank reactor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The shear susceptibility of cell suspension cultures of the plant cell Morinda citrifolia was investigated by subjecting the cells to the well-defined shear field generated in turbulent flow through a capillary. Suspensions were circulated using a peristaltic pump and average shear stresses between 25 and 350 N m-2 were generated in the capillary test section. Control experiments were performed to assess the possible contribution of the peristaltic pump to the observed cell damage. There was clear evidence of pump-induced damage at the more severe test conditions and all viability measurements were corrected accordingly. Both shake flask suspension cultures (aged between 9 and 15 days) and repeated batch fermentation cultures, grown in a stirred tank reactor (STR) under a variety of controlled agitation conditions, were tested in the capillary shear loop. The cell damage incurred was evaluated in terms of suspension viability, as determined by a dye exclusion technique. Viability loss was found to conform closely to a first-order model in which the rate constant was observed to increase with the imposed shear stress. Furthermore, a linear relationship was identified between the specific death constant and the cumulative energy dissipated. Post-shear morphological measurements showed that the chain length distribution is shifted toward markedly lower values. In comparison with shake flask cultures, repeated batch fermentation cultures exhibited a marked increase in sensitivity to capillary shear. Based upon the determined morphological characteristics, this result is primarily attributable to the increased chain lengths characteristic of the repeated batch cultures. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 524-535 
    ISSN: 0006-3592
    Keywords: respiration quotient ; carbon dioxide evolution rate ; continuous culture ; cell metabolism ; bicarbonate buffer ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The determination of the respiration quotient (RQ = CER/OUR) has not been used so far as a tool for understanding animal cell metabolism. This is due to problems in measuring the carbon dioxide evolution rate (CER) rather than the oxygen uptake rate (OUR). The determination of the CER is complicated by the use of bicarbonate in the medium. Using liquid and gas balances we have derived an equation for continuous culture to quantify the amount of CO2 that comes from the bicarbonate in the feed. Under cell-free conditions, values predicted by this equation agree within 4% with the experimental results. In continuous culture using hybridoma cells, the CO2 from the feed, as determined by an IR-gas analyzer, was found to represent a significant amount of the total measured CO2 in the off-gas (50% in a suboptimal, and 30% in high-growth medium). Furthermore, the problem of CO2 loss from the medium during medium preparation and storage was solved using both a theoretical and an experimental approach. RQ values in continuous culture were evaluated for two different growth media. Small but significant differences in RQ were measured, which were matched by differences in specific antibody rates and other metabolic quotients. In a medium with Primatone RL, an enzymatic hydrolysate of animal cell tissue that causes a more than twofold increase in cell density, the RQ was found to be 1.05, whereas in medium without Primatone RL (but containing amino acids equivalent in composition and concentration to Primatone RL) the RQ was found to be 0.97. We suggest the RQ to be a useful parameter for estimating the physiological state of cells. Its determination could be a suitable tool for both the on-line control of animal cell cultivations and the understanding of cell metabolism. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 10-17 
    ISSN: 0006-3592
    Keywords: proteins ; enzymes ; immobilization ; biopolymers ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Subtilisin has been modified with polyethylene glycol (PEG) monomethacrylate (MW 8000) by reductive alkylation, and incorporated into polymethyl methacrylate durring free-radical initiated polymerization. The activity and stability of the PEG-modified enzymes have been determined in aqueous buffer and organic solvents. The Km and Vmax values for unmodified, singly and doubly modified subtilisin were compared in these environments, and the half-lives of both modified enzymes were remarkably high (up to 2 months). The protein-containing polymer was analyzed for activity and polymer properties, and our results indicate that active subtilisin can be incorporated into polymethyl methacrylate during polymerization in organic solvents while retaining its activity and stability. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 33-41 
    ISSN: 0006-3592
    Keywords: lipase ; reverse micelles ; surfactants ; esterification ; glycerides ; kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The activity of purified Pseudomonas cepacia lipase has been investigated in esterification reactions of various aliphatic alcohols with natural fatty acids. The reactions were carried out in microemulsions formed in isooctane by bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT). Kinetic studies showed that the reaction follows a ping-pong bi-bi mechanism with inhibition by both substrates. The apparent kinetic parameters of the reaction were found to be Km octanol = 310 mM, Km lauric acid = 78 mM, and Vmax = 250 μmol min-1 mg-1. The same system was used for the synthesis of mono- and diglycerides from glycerol and lauric acid, which was successful at very low wo values. The catalytic behavior of P. cepacia lipase was also studied in esterification reactions performed in a nonionic microemulsion system formulated by tetraethyleneglycoldodecylether (C12E4). The optimum activity was found at about wo = 8. The apparent values of Vmax app and Km app for octanol were calculated and found to be 100 μmol min-1 mg-1 and 76 mM, respectively. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 69-79 
    ISSN: 0006-3592
    Keywords: E. coli ; linear optimization ; metabolic fluxes ; stoichiometry ; sensitivity analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Stoichiometrically based flux balance models provide a method to quantify the metabolic pathway fluxes within a living cell. Predictions of flux balance models are expected to have applications in pathway engineering as well as in bioprocess design and control. These models utilize optimality principles applied to metabolic pathway stoichiometry along with the metabolic requirements for growth to determine the flux distribution in a metabolic network. A flux balance model has been developed for Escherichia coli W3110 using five experimentally determined strain-specific parameters. In this report, we determine the sensitivity of the predictions of the flux balance model to these five strain-specific parameters. Model predictions are shown to be sensitive to the two parameters describing metabolic capacity, while they are relatively insensitive to the three parameters that describe the metabolic requirements for growth. Thus, when stoichiometrically based models are formulated for additional strains one needs to measure the metabolic capacity (maximum rates of nutrient and oxygen utilization) accurately. Determination of metabolic capacity from batch experiments is relatively easy to perform. On the other hand, the harder to determine maintenance parameters need not be as accurately determined. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 196-204 
    ISSN: 0006-3592
    Keywords: tryptic casein phosphopeptides ; peptides ; casein phosphopeptides ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Anticariogenic casein phosphopeptides (ACPP) contain the cluster sequence -Ser(P)-Ser(P)-Ser(P)-Glu-Glu- and have commercial potential as toothpaste, mouthwash, and food additives for the prevention of dental caries. In an approach to develop a commercial-scale process for the production of ACPP we have comprehensively characterized casein phosphopeptides (CPP) produced under industrially relevant conditions. Sodium caseinate (10% w/v) was hydrolyzed by Novo trypsin (commercial grade) at 50°C for 2 h and CPP were purified from the acid clarified hydrolysate by a single-step selective precipitation procedure involving Ca2+ (20 mol/mol casein) and ethanol (50% v/v) at pH 4.6 or 8.0. The individual peptides of the CPP preparations were purified by reversed-phase high-performance liquid chromatography (HPLC) and then identified by amino acid composition and sequence analyses. The yield of the pH 8.0 precipitate (13.85 ± 0.48 wt % of the caseinate) was slightly higher than that of the pH 4.6 precipitate (11.04 ± 0.30 wt % of the caseinate). However, the pH 4.6 precipitate contained predominantly (86.4 mol %) ACPP cluster peptides with small amounts of the diphosphorylated peptides (13.6 mol %), αs1(43-58) and αs2(126-136). In the pH 8.0 precipitate the cluster peptides represented a smaller proportion of the total peptides (61.9 mol %) due to increased recoveries of the diphosphorylated peptides (24.4 mol %) as well as the additional recovery of the monophosphorylated peptide β(33-48) (13.7 mol %) indicating increased cross-linking by Ca2+ at the higher pH. The recovery of the ACPP from the original caseinate was similar for both the pH 4.6 and 8.0 precipitates. Slight chymotryptic activity was detected in the industrial-grade enzyme, resulting in minor truncation of some peptides. Also some deamidation and methionine oxidation of one peptide, αs1(59-79), were detected. In conclusion, ACPP can be produced under industrially relevant conditions with only minor modifications such as slight truncation, deamidation, and methionine oxidation. However, in order to prepare casein phosphopeptides predominantly containing the cluster sequence -Ser(P)-Ser(P)-Ser(P)-Glu-Glu-, the single-step selective precipitation with Ca2+/ethanol should be performed at pH 4.6 rather than pH 8.0. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 245-250 
    ISSN: 0006-3592
    Keywords: Escherichia coli enterotoxin ; fed batch ; high cell density ; fermentation ; purification ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: High cell density fermentation studies were performed to produce the B subunit of Escherichia coli heat-labile enterotoxin (LTB) from a Vibrio cholerae culture that carries a recombinant plasmid with an ampicillin resistance gene, tac promoter, and the gene encoding LTB. Upon induction with isopropyl-β-D-thiogalactopyranoside (IPTG) the culture secreted the protein into the extracellular milieu. Fed-batch fermentation with stepwise addition of a total of 5 mM of IPTG during the active growth phase of the organism resulted in the production of 400 mg/L of LTB in 9 h and a cell optical density (OD) of 24. The LTB was purified to homogeneity with 70% recovery from the fermentation broth and was found to be chemically and biologically identical to the native protein by N-terminal amino acid sequencing and receptor binding assay. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 285-291 
    ISSN: 0006-3592
    Keywords: Klebsiella pneumoniae 62-1 ; isochorismate hydroxymutase (E.C. 5.4.99.6) ; affinity immobilization ; isochorismate excretion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Two methods are described for the preparation of enantiomerically pure (+)-trans-isochorismic acid, an important metabolite of the postchorismate pathway. Both methods can be employed to prepare isotopically labeled isochorismic acid. One of the two methods is suitable to prepare bulk quantities of isochorismic acid using a recombinant strain of Klebsiella pneumoniae 62-1. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 334-346 
    ISSN: 0006-3592
    Keywords: mammalian cells ; glycolysis ; glutarninolysis ; regulation ; kinetic model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A number of factors have been shown to affect the metabolism of glucose and glutamine in mammalian cells and their mechanisms have been partially elucidated. Despite these efforts, a quantitative knowledge of the significance of these factors, the regulation of glucose and glutamine utilization, and particularly the interactions of these two nutrients is still lacking. Controversies exist in the literature. To clarify some of these controversies, mathematical models are proposed in this work which enable to separate and identify the effects of individual factors. Experimental data from five cell lines obtained in batch, fed-batch, and continuous cultures, both under steady-state and transient conditions, were used to verify the model formulations. The resulting kinetic models successfully describe all these cultures. According to the models, the specific consumption rate of glucose (QGlc) of continuous animal cells under normal culture conditions can be expressed as a sum of three parts: a part owing to cell growth; a part owing to glucose excess; and a part owing to glutamine regulation. The specific consumption rate of glutamine (qGlc7) can be expressed as a sum of only two parts: a part owing to cell growth; and a part owing to glutamine excess. Using the kinetic models the interaction and regulation of glucose and glutamine utilizations are quantitatively analyzed. The results indicate that, whereas qGlc is affected by glutamine, qGln appears to be not or less significantly affected by glucose. It is also shown that the relative utilizations of glucose and glutamine by anabolism and catabolism are mainly affected by the residual concentrations of the respective compounds and are less sensitive to growth rate and the nature of growth limitation.© 1995 John Wiley & Sons, Inc
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 347-354 
    ISSN: 0006-3592
    Keywords: NADH fluorescence ; culture redox potential ; Vitreoscilla hemoglobin ; oxygen fluctuation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: On-line NAD(P)H fluorescence and culture redox potential (CRP) measurements were utilized to investigate the role of Vitreoscilla hemoglobin (VHb) in perturbing oxygen metabolism of microaerobic Escherichia coli Batch cultures of a VHb-synthesizing E. coli strain and the iso-genic control under fully aerated conditions were subject to several high/low oxygen transitions, and the NAD(P)H fluorescence and CRP were monitored during these passages. The presence of VHb decreased the rate of net NAD(P)H generation by 2.4-fold under diminishing oxygen tension. In the absence of aeration, the strain producing VHb maintained a steady NAD(P)H level 1.8-fold less than that of the control, indicating that the presence of VHb keeps E. coli in a more oxidized state under oxygen-limited conditions. Estimated from CRP, the oxygen uptake rates near anoxia were 25% higher for cells with VHb than those without. These results suggest that VHb-expressing cells have a higher microaerobic electron transport chain turnover rate. To examine how NAD(P)H utilization of VHb-expressing cells responds to rapidly changing oxygen tension, which is common in large-scale fermentations, we pulsed air intermittently into a cell suspension and recorded the fluorescence response to the imposed dissolved oxygen (DO) fluctuation. Relative to the control, cells containing VHb had a sluggish fluorescence response to sudden changes of oxygen tension, suggesting that VHb buffers intracellular redox perturbations caused by extracellular DO fluctuations.© John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 355-372 
    ISSN: 0006-3592
    Keywords: steric mass action ; step gradient ; ion exchange ; protein purification ; nonlinear adsorption ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Nonlinear adsorption plays an important role in determining the chromatographic behavior of proteins in preparative ion-exchange chromatography. In this article, the steric mass action (SMA) isotherm is used in conjunction with a mass transport model to describe nonlinear cation-exchange chromatography. Excellent agreement is observed between simulated and experimental step gradient separations of the proteins α-chymotryp-sinogen A, cytochrome C, and lysozyme. A systematic method of selecting the optimum step gradient program for a given separation problem is presented and employed to study optimization of step gradient chromatography under conditions of high mass loading. This article includes consideration of the effects of the adsorption properties of the feed stream, the feed stream concentration, protein solubility, and otherconstraints on the optimum separation conditions.© John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 17-24 
    ISSN: 0006-3592
    Keywords: spheroid ; polymer ; temperature-responsive ; collagen ; crosslinkage ; gradient surface ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A simple method for preparing multicellular spheroids from varied cell types has been successfully developed by using a stepwise gradient surface in cell attachability or detachability. The surface was composed of poly-N-isopropylacrylamide (PNIPAAm), a temperature responsive polymer, as a cell detaching component, and collagen as a cell attaching component. The surface functions as a culture substratum at 37°C; then, when lowering the temperature of culture medium, the cells attached to it detach as a self-supporting sheet. This is because PNIPAAm dissolves into the culture medium below the lower critical solution temperature (LCST; about 30°C), but it is insoluble above the LCST. The detached cell sheet forms a multicellular spheroid. The stepwise gradient surface which consisted of six different sectors was prepared by exposing a surface of the PNIPAAm-collagen mixture to ultraviolet (UV) irradiation six times using a photomask, sliding the hole position in the photomask, and changing the energy of UV irradiation. This was because crosslinking of collagen depended on the energy of UV irradiation, then, cell attachability to and detachability from the surface were tightly controlled by changing the energy.The stepwise gradient surface allowed us to easily determine optimal surface conditions to obtain good cell attachment and detachment as a self-supporting sheet from the surface to prepare multicellular spheroids. According to the evaluation of the attachability and detachability of 23 cell types, the optimal surface condition remarkably depended on each cell type. The detached cells under optimal surface conditions, including fibroblasts, osteoblastic cells, smooth muscle cells, and measangial cells, which were very difficult to form spherioids using conventional methods, were able to form multicellular spheroids. The results clearly demonstrate that the above-described method for preparing multicellular spheroids can be applied to varied cell types. © 1995 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...