ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences
  • 1970-1974  (504)
  • 1973  (257)
  • 1971  (247)
Collection
Publisher
Years
  • 1970-1974  (504)
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 133 (1971) 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 133 (1971), S. 93-103 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Within the supraesophageal ganglion of polynoids is a vertical fiber tract which has the appearance of a “Y” in transverse sections of the brain, and contains the axons of many neurosecretory cells. The granule-filled terminals of these neurosecretory fibers are found at the base of the tract where they are in contact with the inner surface of the sheath covering the ventral surface of the brain. This sheath separates these neurosecretory endings from an underlying pericapsular epithelium which is thicker in this region. Beneath this pericapsular epithelium is a coelomic sinus. The dorsal blood vessel is located within this sinus and is “innervated” by a pair of fiber bundles that pass out of the brain at the base of the vertical fiber tract. The outer surface of the vessel is covered by epithelioid cells which contact these fiber bundles and the thickened pericapsular epithelium, and sometimes contain granular cytoplasmic inclusions. The lumen of the vessel is continuous with the lumina of a pair of cellular, thickwalled structures of unknown function which are attached to the ventro-lateral margins of the brain. The relationship between neurosecretory endings, enlarged pericapsular cells, coelomic sinus and blood vessel provides morphological evidence for the hypothesis that these structures are elements of a neuroendocrine system, similar in some respects to the brain-infracerebral gland complex of nereid and nephtyid polychaetes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 133 (1971), S. 139-165 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Gross details of the reproductive cycle and the cytology of oogenesis were studied in 155 egg clutches produced by 69 captive individuals of the triploid parthenogenetic lizard Cnemidophorus uniparens. The mean clutch cycle lasted 23 days. The mean number of ova per clutch was 3.3, and the mean number of oocytes per right and left ovaries was 1.65 and 1.70, respectively. Comparison of the size of the oocytes at ovulation (9-10 mm) with the estimated mean duration of vitellogenesis (8.8 days) gave an average of approximately 1 mm yolk deposition per day. The mean time for the retention of eggs in the oviducts was 9.3 days. The germinal disc of the oocyte consists of a series of layers formed by the arrangement of various cytoplasmic and yolk particles in the polar region. In a mature oocyte the germinal vesicle is located immediately below the vitelline membrane and lies at the center of the germinal disc. The germinal vesicle is characterized by a dense disc-like cluster of diplotene chromosomes. Diplonema extends until near ovulation when the oocytes have attained a size of about 9 mm. Diakinesis and metaphase I occur rapidly and immediately prior to ovulation. Counts of approximately as many bivalents as there are somatic chromosomes were obtained from oocytes at diakinesis and metaphase I.The second division occurs almost immediately before or at the precise moment of ovulation. The chromosomes of the first polar body consist of dyads, of which there are as many as the triploid number of 69. A metaphase II plate obtained in polar view also revealed dyad chromosomes, of which there were approximately as many as the triploid somatic number. The second telophase is normal as evidenced by formation of the second polar body. Chromosomes from the opposing telophase plates show a monad structure. The presence of as many bivalents in the first division as the triploid somatic number of 69 indicates that the 3N condition of C. uniparens was doubled prior to meiosis. This is further supported by the occurrence of two maturation divisions each giving rise to a polar body, by the dyad structure of the chromosomes in the first polar body and the second metaphase, and by the presence of monochromosomes at telophase II. Thus, parthenogenesis in these lizards is of the meiotic type. The somatic number of chromosomes is doubled early in oogenesis presumably by a premeiotic endoduplication, and the 3N level is restored by two subsequent maturation divisions.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 133 (1971) 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 133 (1971), S. 17-40 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Two specimens of a group of five foetuses, 35-37 mm in total length, of Squalus acanthias were serially sectioned and stained. These specimens were studied for the purpose of testing statements made in the literature, especially by Holmgren ('40), regarding cell sources and skeletal development. Many of Holmgren's results were confirmed with some important differences in detail. Limited blastemas of dermal bones were not evident although a diffuse subepidermal blastema was present in certain areas. There is evidence of delamination addition to the jaws and many parts of the endocranium. Although the trabecula is in part of visceral origin, the visceral material does not represent an infrapharyngohyal since it always has been an integral part of the endocranium, never a formed element of the arch. The same applies to the pharyngo region of the hyoid arch. The pharyngohyal tissue forms the area of articulation of the hyomandibula and the lamina hypotica. Thus a typical lateral commissure is not formed and the resulting otic capsule-basicranial association is unique to the elasmobranchs. The hyomandibula is the epihyal and there is no evidence of a symplectic in this group. The jaws appear to incorporate delamination tissue, associated in teleostomes with dermal bone, in addition to the neural crest proper.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The ontogeny of amphicoelous vertebrae was studied in Ptyodactylus hasselquistii and Hemidactylus turcicus, and that of procoelous vertebrae, in Sphaerodactylus argus. The embryos were assigned arbitrary stages, drawn to scale, and mostly studied in serial sections.Resegmentation occurs as in all amniotes. A sclerocoel divides each sclerotome into an anterior “presclerotomite” and a denser posterior “postsclerotomite.” Tissue surrounding the intersegmental boundary forms the centrum, which is intersegmental. Tissue around the sclerocoel builds the intervertebral structures, which are midsegmental. In the trunk and neck, postsclerotomites form neural arches, and presclerotomites build zygapophyses.The adult centrum consists of the perichordal primary centrum, plus neural arch bases (= secondary centrum). Between the latter and the arch proper, a neurocentral suture persists until obliterated in maturity. A dorso-ventral central canal persists on either side of the primary centrum, between the latter and the secondary centrum.The notochord becomes true cartilage midvertebrally in all vertebrae, and elastic cartilage intervertebrally in the posterior caudal region. Elsewhere its characteristic tissue persists.Intervertebrally, cervical hypapophyses, caudal chevrons and chevron-bases in the trunk are preformed early in cartilage. Directly ossifying median intercentra are added later in all regions.The first cervical presclerotomite is absent: the hypapophysis (= corpus) of the atlas consists exclusively of postsclerotomitic tissue, there is no proatlas, and the odontoid lacks the apical half-centrum present in other lepidosaurians.In the autotomous caudal region presclerotomites are as prominent as postsclerotomites. Both build neural arches, the two arches of each vertebra remaining distinct and ossifying separately, so that the intersegmental autotomy split persists between them.The last sclerotome is complete, its postsclerotomite forming a half centrum which ossifies.In Sphaerodactylus, while the vertebrae ossify, each intervertebral ring becomes concave anteriorly, convex posteriorly; it remains as a cushion between the condyle and a facet formed by differential growth of the centra. Thus these procoelous centra resemble the amphicoelous centra of Ptyodactylus and Hemidactylus, rather than the procoelus centra of other squamates.The vertebral column of Gekkonoidea closely resembles in its development and microscopical structure that of Sphenodon.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 133 (1971), S. 125-138 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The bodies of adult and fifth instar Notonecta possess external air stores which are periodically renewed at the surface of the water. Both nymphs and adults have large ventral air stores on the thorax and abdomen and obtain atmospheric air at the posterior end of the latter; the adult also has dorsal subalar and supra-alar air stores on both these regions. Ten pairs of spiracles open onto the air stores. Although the seven small, ventrally placed abdominal spiracles are probably both exhalant and inhalant in nymphs and adults, the three large anterior spiracles (mesothoracic, metathoracic, and first abdominal), which play a more important respiratory role, appear to function differently in mature and immature Notonecta. In the nymph they are probably both inhalant and exhalant, and communicate broadly with each other and with the ventral air stores. In the adult, however, they open onto separate, air-filled chambers, each of which communicates differently with various parts of the air stores. Although all three probably function in exhalation, only the first abdominal spiracle, whose spiracular chamber is widely continuous with the dorsal and ventral air stores, appears to be well suited for inhalation.Several morphological features, most notably the development of long prothoracic lobes, separate spiracular chambers, and long, movable forewings, allow the adult a greater variety of respiratory modes than are available to the nymph. Some of the respiratory advantages of the adult are: (1) a larger amount of stored air; (2) a longer subalar air store, which can serve as an alternate pathway between the air stores and the atmosphere; (3) a greater capacity to utilize dissolved as well as atmospheric oxygen; (4) greater separation and functional specialization of the three anterior spiracles, thus allowing more separation of exhaled air from oxygen-rich air on the external surface of the thorax; (5) the probable ability to regulate the continuity between various parts of the air stores, thus utilizing alternate pathways of air circulation and/or changing the functions of the three anterior spiracles; and (6) better protection of the latter against the entry of water during prolonged submergence.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 133 (1971) 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Growth of the skeleton of regenerating spines of the sea urchin, Strongylocentrotus purpuratus, was studied with the light and scanning electron microscopes during the formation of a growth ring or cycle.Growth was initiated about three days after fracture and was linear between 5 and about 40 days after fracture, with a mean rate of 0.16 mm/day. There-after, a decline in growth rate was observed, being attributed to abrasion.The new skeleton first appeared as minute, conical „micro-spines“ on the fractured surface of the spine shaft initiating regeneration of the inner zone of meshwork. Subsequent growth of micro-spines of both the developing inner zone of meshwork, and an outer zone of radiating wedges, formed a conical fenestrated skeleton on the fractured surface of the shaft. Further deposition of micro-spines along the shaft, initially at the level of fracture, formed meshwork which gradually became solidified externally resulting in a new cycle about 60 days after fracture. In contrast, a new cycle was initiated at the milled ring in non-fractured spines during total regeneration on bare tubercles, demonstrating that growth of spines also takes place in the absence of fracture.Experiments conducted in vitro demonstrate that spine regeneration is not a polar phenomenon.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In the telotrophic ovarioles of Dysdercus fasciatus, mononucleate, binucleate and multinucleate trophocytes are seen in the germarium. Cellular breakdown of the multinucleate cells is seen in the posterior part of this tissue. The nutritive cords, which are continuous with the trophic core at the one end and the oocytes of the vitellarium at the other, contain material of fibrous appearance which continues into the trophic core. The ovariole is enclosed in two sheaths throughout its length. Prefollicular tissue in the germarium appears to give rise to the follicle cells. Mitosis is common in this zone. Oocytes are at first surrounded by a multilayered epithelium. This is later reduced progressively to one layer. This one layered follicular epithelium is at first columnar but then changes to cuboidal mononucleate, cuboidal binucleate and finally to a squamous binucleate condition This epithelium thus seems to accommodate the increased volume of the oocyte by growth and a change of shape. The oocyte grows fastest at those times when it is surrounded by cuboidal and squamous epithelial cells.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...