ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • FLUID MECHANICS AND HEAT TRANSFER
  • 1985-1989
  • 1955-1959  (4)
  • 1950-1954
  • 1957  (4)
  • 1
    Publication Date: 2019-06-28
    Description: The trajectories of droplets i n the air flowing past a 36.5-percent-thick Joukowski airfoil at zero angle of attack were determined. The amount of water i n droplet form impinging on the airfoil, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface were calculated from the trajectories and cover a large range of flight and atmospheric conditions. With the detailed impingement information available, the 36.5-percent-thick Joukowski airfoil can serve the dual purpose of use as the principal element in instruments for making measurements in clouds and of a basic shape for estimating impingement on a thick streamlined body. Methods and examples are presented for illustrating some limitations when the airfoil is used as the principal element in the dye-tracer technique.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-4035
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The convective heat transfer from the surface of a conical forebody having a hemispherical nose, an included angle of approximately 30 deg, and. a maximum diameter of 18.9 inches was investigated in a wind tunnel for both stationary and. rotating operation. The range of test conditions included free-stream velocities up to 400 feet per second, rotational speeds up to 1200 rpm, and. angles of attack of 0 deg and 6 deg. Both a uniform surface temperature and a uniform heater input power density were used. The Nusselt-Reynolds number relations provided good correlation of the heat-transfer data for the complete operating range at 0 deg angle of attack with and without spinner rotation, and for 6deg angle of attack with rotation. Rotational speeds up to 1200 rpm had no apparent effect on the heat-transfer characteristics of the spinner. The results obtained at 6 deg angle of attack with rotation were essentially the same as those obtained at 0 deg angle of attack without rotation. The experimental heat-transfer characteristics in the turbulent flow region were consistently in closer agreement with the results predicted for a two-dimensional body than with those predicted. for a cone. For stationary operation at 60 angle of attack, the measured heat-transfer coefficients in the turbulent flow region were from 6 to 13 percent greater on the lower surface (windward. side) than on the upper surface (sheltered side) for corresponding surface locations. The spinner-nose geometry appeared to cause early boundary-layer transition. Transition was initiated at a fairly constant Reynolds number (based on surface distance from nose) of 8.0 x 10(exp 4). Transition was completed at Reynolds numbers less than 5.0 x 10(exp 5) for all conditions investigated.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-4093
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The rate and. area of cloud droplet impingement on four bodies of revolution were obtained experimentally in the NACA Lewis icing tunnel with a dye-tracer technique. The study included spheres, ellipsoidal forebodies of fineness ratios of 2.5 and 3.0, and a conical forebody of 300 included angle and covered a range of angles of attack from 0? to 60 and rotational speeds up to 1200 rpm. The data were obtained at an airspeed of 157 knots and are correlated by dimensionless impingement parameters. In general, the experimental data show that the local and total impingement rates and impingement limits of bodies of revolution are primarily functions of the modified inertia parameters, the body shape, and fineness ratio. Both the local impingement rate and impingement limits depend upon the angle of attack. Rotation of the bodies had a negligible effect on the impingement characteristics except for an averaging effect at angle of attack. For comparable diameters the bluffer bodies had the largest total impingement efficiency, but the finer and sharper bodies had the largest values of maximum local impingement efficiency and, in most cases, the largest limits of impingement. In most cases, the impingement characteristics were less than those calculated from theoretical trajectories; in general, however, fairly good agreement was obtained between the experimental and theoretical impingement characteristics.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TN-4092
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NACA-TR-1317
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...