ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.06. Seismology  (6)
  • Creep observations and analysis
  • Triticum aestivum
  • Elsevier  (4)
  • Springer  (1)
  • EGU - Copernicus
  • Wiley
  • Wiley-AGU
  • 2020-2024  (6)
  • 2024  (6)
  • 1
    Publication Date: 2024-02-07
    Description: A catalogue of precisely located micro-seismicity is fundamental for investigating seismicity and rock physical properties in active tectonic and volcanic regions and for the definition of a ‘baseline’ seismicity, required for a safe future exploitation of georesource areas. In this study, we produce the first manually revised catalogue of micro-seismicity for Co. Donegal region (Ireland), an area of about 50K M2 of on-going deformation, aimed at localizing natural micro-seismic events occurred between 2012 and 2015. We develop a stochastic method based on a Markov chain Monte Carlo (McMC) sampling approach to compute earthquake hypocentral location parameters. Our results indicates that micro-seismicity is present with magnitudes lower than 2 (the highest magnitude is 2.8).The recorded seismicity is almost clustered along previously mapped NE-SW trending, steeply dipping faults and confined within the upper crust (focal depth less than 10 km). We also recorded anthropogenic seismicity mostly related to quarries' activity in the study area.
    Description: Published
    Description: 62-76
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-08
    Description: This study is focused on fluids characterization and circulations through the crust of the Irpinia region, an active seismic zone in Southern Italy, that has experienced several high-magnitude earthquakes, including a catastrophic one in 1980 (M = 6.9 Ms). Using isotopic geochemistry and the carbon‑helium system in free and dissolved volatiles in water, this study aims to explore the processes at depth that can alter pristine chemistry of these natural fluids. Gas-rock-water interactions and their impact on CO2 emissions and isotopic composition are evaluated using a multidisciplinary model that integrates geochemistry and regional geological data. By analyzing the He isotopic signature in the natural fluids, the release of mantle-derived He on a regional scale in Southern Italy is verified, along with significant emissions of deep-sourced CO2. The proposed model, supported by geological and geophysical constraints, is based on the interactions between gas, rock, and water within the crust and the degassing of deep-sourced CO2. Furthermore, this study reveals that the Total Dissolved Inorganic Carbon (TDIC) in cold waters results from mixing between a shallow and a deeper carbon endmember that is equilibrated with carbonate lithology. In addition, the geochemical signature of TDIC in thermal carbon-rich water is explained by supplementary secondary processes, including equilibrium fractionation between solid, gas, and aqueous phases, as well as sinks such as mineral precipitation and CO2 degassing. These findings have important implications for developing effective monitoring strategies for crustal fluids in different geological contexts and highlight the critical need to understand gas-water-rock interaction processes that control fluid chemistry at depths that can affect the assessment of the CO2 flux in atmosphere. Finally, this study highlights that the emissions of natural CO2 from the seismically active Irpinia area are up to 4.08·10+9 mol·y-1, which amounts is in the range of worldwide volcanic systems.
    Description: Published
    Description: 165367
    Description: OST3 Vicino alla faglia
    Description: OST5 Verso un nuovo Monitoraggio
    Description: JCR Journal
    Keywords: CO(2) output; Carbon isotopes; Degassing; Earthquakes; Noble gases; Precipitation ; 04.04 Solid Earth ; 01.01. Atmosphere ; 03.01. General ; 03.02. Hydrology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-17
    Description: We have found a previously unreported later seismic phase in seismograms of European seismic stations from intermediate-depth and deep earthquakes of the Southern Tyrrhenian subduction zone. We observe this phase at stations from 6 to 9◦ from the epicentre, towards north. Only seismograms of earthquakes located in a welldefined region of the slab, in the depth range of 215–320 km, show the later x-phase. In this work, we describe the nature and possible origin of this phase, and we provide a simple 2D model to explain the observed arrival times. Our analyses reveal that the x-phase propagates downward in a high velocity layer, possibly located within the deepest part of the slab. We suggest that this layer reveals the presence of the dense hydrous magnesium silicate phase A, introduced from petrological laboratory experiments, inferred to carry water in the upper mantle and predicted to be found in cold subduction zones.
    Description: Published
    Description: 229919
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: Southern Tyrrhenian subduction zone ; Mineral phase A ; Intermediate and deep seismicity ; Waveforms analyses ; Later seismic arrival/phase ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-12
    Description: We have provided the first estimate of scat- tering and intrinsic attenuation for the Gargano Prom- ontory (Southern Italy) analyzing 190 local earthquakes with M L ranging from 1.0 to 2.8. To separate the intrin- sic Q i and scattering Q s quality factors with the Wen- nerberg approach (1993), we have measured the direct S waves and coda quality factors ( Q 𝛽 , Q c ) in the same volume of crust. Q 𝛽 parameter is derived with the coda normalization method (Aki 1980) and Q c factor is derived with the coda envelope decay method (Sato 1977). We selected the coda envelope by performing an automatic picking procedure from T start = 1.5T S up to 30 s after origin time (lapse time T L ). All the obtained quality factors clearly increase with frequency. The Q c values correspond to those recently obtained for the area. The estimated Q i are comparable to the Q c at all frequencies and range between 100 and 1000. The Q s parameter shows higher values than Q i , except for 8 Hz, where the two estimates are closer. This implies a pre- dominance of intrinsic attenuation over the scattering attenuation. Furthermore, the similarity between Q i and Q c allows us to interpret the high Q c anomaly previ- ously found in the northern Gargano Promontory up to a depth of 24 km, as a volume of crust characterized by very low seismic dumping produced by conversion of seismic energy into heat. Moreover, most of the earth- quake foci fall in high Q i areas, indicating lower level of anelastic dumping and a brittle behavior of rocks.
    Description: Published
    Description: 827-846
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: Seismic attenuation · Coda normalization method · Intrinsic quality factor · Scattering quality factor · Southern Italy · Gargano Promontory · OTRIONS seismic network ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-13
    Description: This article describes a dataset of acceleration signals acquired from a low-cost Wireless Sensor Network (WSN) during seismic events that occurred in Central Italy. The WSN consists of 5 low-cost sensor nodes, each embedding an ADXL355 tri-axial MEMS accelerometer with a fixed sampling frequency of 250 Hz. The data was acquired from February 2023 to the end of June 2023. During this period, several earthquake sequences affected the area where the sensor network was installed. Continuous data was acquired from the WSN and then trimmed around the origin time of seismic events that occurred near the installation site, close to the city of Pollenza (MC), Italy. A total of 67 events were selected, whose data is available at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) Seismology data center. The traces acquired from the WSN were then manually annotated by analysts from INGV. Annotations include picking time for P and S phases, when distinguishable from the background noise, alongside an associated uncertainty level for the manual annotations. The resulting dataset consists of 328 3 × 25,001 arrays, each associated with its metadata. The metadata includes event data (hypocenter position, origin time, magnitude, magnitude type, etc.), trace-related data (mean, median, maximum, and minimum amplitudes, manual picks, and picks uncertainty), and sensor-specific data (sensor name, sensitivity, and orientation). Furthermore, a small dataset consisting of non-seismic traces is included, with the goal of providing records of noise-only traces, relative to both electronic and environmental/anthropic noise sources. The dataset holds potential for training and developing Machine Learning or signal processing algorithms for seismic data with low signal-to-noise ratios. Additionally, it is valuable for research about earthquakes, structural health monitoring, and MEMS accelerometer performance in civil and seismic engineering applications.
    Description: Published
    Description: 110174
    Description: OST5 Verso un nuovo Monitoraggio
    Description: JCR Journal
    Keywords: Earthquake early warning; Internet of things; MEMS accelerometers; Structural health monitoring; Wireless sensor network ; 05.04. Instrumentation and techniques of general interest ; 05.02. Data dissemination ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-05
    Description: We use geophysical data together with a recent subglacial bedrock map (BEDMACHINE model) to obtain and investigate a new three-layer sediment model for Antarctica that locally improves the global sediment model. We provide a combined, continuous, sediment model for Antarctica and surrounding oceans by joining such improved continental sedimentary model with an existing global one (GlobSed). Our results reveal large differences between sedimentary basins for Antarctica due to their age and origin. The maximum thickness of sediments is reached under Filchner-Ronne Ice Shelf and off the Weddell Sea coast (10–12 km); further offshore, towards the ocean, the thickness of sediments drops to 4–5 km. We divide the sediment cover into three layers to distinguish material with different velocities. The lower sediment layer (deeper than 7 km) with high P-wave velocities (4.0–4.9 km/s) is found only for Lambert Rift and Filchner-Ronne basin. The middle layer (2–7 km) has large variations for different sedimentary basins: 3.5–3.7 km/s for Lambert Basin; 4.0–4.3 km/s for Ross, Byrd and Bentley basins; 3.3–4.0 km/s for Filchner-Ronne Basin. The upper sediment layer (0–2 km) has large velocity variations, from 2.0 km/s for Ross and Lambert basins (young sediments) to 4.7 km/s for Dronning Maud Land basins. We suggest that P-wave velocities larger than 4 km/s represent old, compacted sediments which belong to the Beacon Supergroup; about 3 km/s refer to Mesozoic (rifted?) sediments; and less than 3 km/s relate to young Cenozoic sediments. According to this criterion, Dronning Maud Land, Bentley and Byrd basins belong to the Beacon Supergroup, while more complex and thicker Ross, Lambert and Filchner-Ronne basins contain sediments from Beacon Supergroup in the middle or lower layer, respectively. Other sedimentary basins with more moderate velocities possibly belong to the East Antarctic Rift System which formed later during Gondwana breakup.
    Description: Published
    Description: 229662
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...