ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Chemical Society
  • Annual Reviews
  • Periodicals Archive Online (PAO)
  • 2020-2024  (3)
  • 1995-1999
  • 1980-1984
  • 1935-1939
  • 2023  (3)
Collection
Years
  • 2020-2024  (3)
  • 1995-1999
  • 1980-1984
  • 1935-1939
Year
  • 1
    Publication Date: 2023-02-28
    Description: © The Author(s), 2023. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Timmermans, M.-L., & Toole, J. The Arctic Ocean’s Beaufort Gyre. Annual Review of Marine Science, 15(1), (2023): 223-248, https://doi.org/10.1146/annurev-marine-032122-012034.
    Description: The Arctic Ocean's Beaufort Gyre is a dominant feature of the Arctic system, a prominent indicator of climate change, and possibly a control factor for high-latitude climate. The state of knowledge of the wind-driven Beaufort Gyre is reviewed here, including its forcing, relationship to sea-ice cover, source waters, circulation, and energetics. Recent decades have seen pronounced change in all elements of the Beaufort Gyre system. Sea-ice losses have accompanied an intensification of the gyre circulation and increasing heat and freshwater content. Present understanding of these changes is evaluated, and time series of heat and freshwater content are updated to include the most recent observations.
    Description: Support was provided by the National Science Foundation Office of Polar Programs and the Office of Naval Research.
    Keywords: Arctic Ocean ; Beaufort Gyre ; Circulation ; Sea ice ; Freshwater ; Ocean heat content
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-16
    Description: The uptake ability toward arsenic(V), chromium(VI), and boron(III) ions of ad hoc functionalized magnetic nanostructured devices has been investigated. To this purpose, ligands based on meglumine have been synthesized and used to coat magnetite nanoparticles (Fe3O4) obtained by the co-precipitation methodology. The as-prepared hybrid material was characterized by infrared spectroscopy (IR), X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy combined with energy-dispersive X-ray analysis. Moreover, its magnetic hysteresis properties were measured to evaluate its magnetic properties, and the adsorption kinetics and isothermal models were applied to discern between the different adsorption phenomena. Specifically, the better fitting was observed by the Langmuir isotherm model for all metal ions tested, highlighting a higher uptake in arsenic (28.2 mg/g), chromium (12.3 mg/g), and boron (23.7 mg/g) sorption values if compared with other magnetic nanostructured materials. After adsorption, an external magnetic stimulus can be used to efficiently remove nanomaterials from the water. Finally the nanomaterial can be reused up to five cycles and regenerated for another three cycles.
    Description: Published
    Description: 10775–10788
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Annual Reviews
    In:  EPIC3Annual Review of Marine Science, Annual Reviews, 15(1), pp. 509-538, ISSN: 1941-1405
    Publication Date: 2024-05-10
    Description: The regular movements of waves and tides are obvious representations of the oceans’ rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator–driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...