ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (52)
  • Springer Nature  (26)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (15)
  • Copernicus Publications  (11)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • 2020-2024  (52)
  • 2022  (52)
Collection
Source
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Maritime Studies, Springer Nature, 21(3), pp. 327-338, ISSN: 1872-7859
    Publication Date: 2023-10-30
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉In spite of a proliferation of academic and policy-oriented interest in deep sea mining (DSM), this paper argues that two underlying questions remain underexplored. The first relates to 〈jats:italic〉what〈/jats:italic〉 exactly the seabed 〈jats:italic〉is〈/jats:italic〉; the second to 〈jats:italic〉who〈/jats:italic〉 the stakeholders 〈jats:italic〉are〈/jats:italic〉. It is argued that a greater interrogation of how the seabed is defined and understood, and a deeper consideration of how stakeholders are identified and the politics of their inclusion, is crucial to the enactment of policy and planning techniques. Through the analysis of current regulations to govern DSM in both national and international jurisdictions, this paper critically examines these seemingly banal but vital questions in different contexts. It is contended that most regulations are ‘fuzzy’ when it comes to addressing these questions, with the result that different understandings of the seabed and the implications of mining are ignored and that who stakeholders are and how they are defined causes many relevant voices to be unheard. It is argued, therefore, that it is imperative to address these often-overlooked questions directly in order to inform future seabed policy and governance.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Earth System Dynamics, Copernicus Publications, 13(4), pp. 1677-1688, ISSN: 2190-4979
    Publication Date: 2023-12-05
    Description: The ability to adapt to social and environmental change is an increasingly critical feature of environmental governance. However, an understanding of how specific features of governance systems influence how they respond to change is still limited. Here we focus on how system features like diversity, heterogeneity, and connectedness impact stability, which indicates a system's capacity to recover from perturbations. Through a framework that combines agent-based modeling with "generalized"dynamical systems modeling, we model the stability of thousands of governance structures consisting of groups of resource users and non-government organizations interacting strategically with the decision centers that mediate their access to a shared resource. Stabilizing factors include greater effort dedicated to venue shopping and a greater fraction of non-government organizations in the system. Destabilizing factors include greater heterogeneity among actors, a greater diversity of decision centers, and greater interdependence between actors. The results suggest that while complexity tends to be destabilizing, there are mitigating factors that may help balance adaptivity and stability in complex governance. This study demonstrates the potential in applying the insights of complex systems theory to managing complex and highly uncertain human-natural systems in the face of rapid social and environmental change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-01
    Description: Marine particles of different nature are found throughout the global ocean. The term "marine particles"describes detritus aggregates and fecal pellets as well as bacterioplankton, phytoplankton, zooplankton and nekton. Here, we present a global particle size distribution dataset obtained with several Underwater Vision Profiler 5 (UVP5) camera systems. Overall, within the 64 μm to about 50 mm size range covered by the UVP5, detrital particles are the most abundant component of all marine particles; thus, measurements of the particle size distribution with the UVP5 can yield important information on detrital particle dynamics. During deployment, which is possible down to 6000 m depth, the UVP5 images a volume of about 1 L at a frequency of 6 to 20 Hz. Each image is segmented in real time, and size measurements of particles are automatically stored. All UVP5 units used to generate the dataset presented here were inter-calibrated using a UVP5 high-definition unit as reference. Our consistent particle size distribution dataset contains 8805 vertical profiles collected between 19 June 2008 and 23 November 2020. All major ocean basins, as well as the Mediterranean Sea and the Baltic Sea, were sampled. A total of 19 % of all profiles had a maximum sampling depth shallower than 200 dbar, 38 % sampled at least the upper 1000 dbar depth range and 11 % went down to at least 3000 dbar depth. First analysis of the particle size distribution dataset shows that particle abundance is found to be high at high latitudes and in coastal areas where surface productivity or continental inputs are elevated. The lowest values are found in the deep ocean and in the oceanic gyres. Our dataset should be valuable for more in-depth studies that focus on the analysis of regional, temporal and global patterns of particle size distribution and flux as well as for the development and adjustment of regional and global biogeochemical models. The marine particle size distribution dataset is available at 10.1594/PANGAEA.924375.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-25
    Description: The original version of the Description of Additional Supplementary Files associated with this Article contained errors in the legends of Supplementary Data 5–8 and omitted legends for the Source Data. The HTML has been updated to include a corrected version of the Description of Additional Supplementary Files; the original incorrect version of this file can be found as Supplementary Information associated with this Correction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-25
    Description: Two airborne field campaigns focusing on observations of Arctic mixed-phase clouds and boundary layer processes and their role with respect to Arctic amplification have been carried out in spring 2019 and late summer 2020 over the Fram Strait northwest of Svalbard. The latter campaign was closely connected to the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Comprehensive datasets of the cloudy Arctic atmosphere have been collected by operating remote sensing instruments, in-situ probes, instruments for the measurement of turbulent fluxes of energy and momentum, and dropsondes on board the AWI research aircraft Polar 5. In total, 24 flights with 111 flight hours have been performed over open ocean, the marginal sea ice zone, and sea ice. The datasets follow documented methods and quality assurance and are suited for studies on Arctic mixedphase clouds and their transformation processes, for studies with a focus on Arctic boundary layer processes, and for satellite validation applications. All datasets are freely available via the world data center PANGAEA.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2023-01-18
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2022.
    Description: The morphology of a shoreline can provide insight into the processes that have modified the coast. This thesis investigates how coastal processes can leave fingerprints on the morphology of a coast in sandy environments (barrier islands) and detachment-limited environments (rocky coasts of Earth and possibly Titan). Barrier islands are dynamic and ephemeral, facing an uncertain future from climate change and anthropogenic redistribution of sediment. To evaluate barrier resilience to sea-level rise, I propose a novel dimensionless metric called the Washover Ratio which compares cross-shore (overwash) and alongshore transport. Using this ratio, I find that decreases in overwash flux within the narrow middle section—possibly representing the effects of development—lead to a diminished response to sea-level rise across the entire barrier, and therefore a more vulnerable barrier overall. Further investigation of the balance between overwash and alongshore sediment transport allows for an evaluation of barrier island stability to overwash-induced breaching, which is applied to barriers in the Gulf of Mexico. Beyond Earth, Titan, Saturn’s largest moon, is home to the only other active coastlines in our solar system. However, data is sparse for this icy moon. I investigate the signatures of coastal processes found in the planform shape of its coasts using a combination of landscape evolution models and measurements of shoreline shape. Results show that the coastlines of Titan’s seas are consistent with those of both modelled and Earth lakes with flooded river valleys that have been subsequently eroded by waves, particularly when waves saturate (no longer grow in height) at scales up to 10s of km.
    Description: Work toward this thesis was funded by the National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA). NSF funding was awarded through the Graduate Research Fellowship Program (#1745302) and the Coupled Natural Hazards program (#CNH-1518503). NASA funding was awarded through the Cassini Data Analysis Program (#80NSSC18K1057) and (#80NSSC20K0484).
    Keywords: Barrier Island ; Geomorphology ; Titan
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2023-01-18
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2022.
    Description: The search for underwater threats in littoral regions is a problem that has been researched for nearly a century. However, recent developments in autonomy and robotics have made this issue more complex. The advent of capable autonomous underwater vehicles presents a 21st century flare to this traditional problem. These vehicles can be smaller, quieter, and expendable. Therefore, new methods and tactics used to detect and track these vehicles are needed. The use of a swarm of marine robots can increase the likelihood of uncovering these threats. This thesis provides various Voronoi partition-based methods to autonomously control a swarm of identically capable autonomous surface vessels in a limited coverage and tracking problem. These methods increase the probability of interdiction of an adversary vehicle crossing a defined region. The results achieved from Monte Carlo simulations demonstrate how different protocols of swarm movement can improve detection probability as compared to a stationary swarm provided the detection capability does not change. The swarm control algorithms are employed on Clearpath Heron USVs to validate the autonomy algorithms.
    Keywords: Swarm Autonomy Search
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2023-01-18
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2022.
    Description: Acoustic propagation measurements are made in a highly variable and stratified estuary using high frequency transducers (120kHz) on tripods placed across the main channel of the river flow. The measurements are taken in the Connecticut River across several tidal cycles, when the flood tide causes a wedge of seawater to press up the river bed, beneath the fresh water, and then be eroded and pushed back out during the ebb. BELLHOP, implemented via Matlab, is a beam/ray tracing method and is used to model the acoustic propagation in this environment using collected temperature, salinity, and depth data. Multiple modeling comparisons are done over the period of three full tidal cycles, totaling a thousand separate modeling runs and compiled into a time series. Arrival times measurements from the transducer system were able to be accurately modeled, validating BELLHOP as a useful tool in modeling this very dynamic and challenging acoustic environment.
    Description: This thesis would not have been possible with the data collected by Dr. Andone Lavery, Jonathan Fincke and others, originally funded by the Office of Naval Research (through ONR Grant #N00014-11-10058).
    Keywords: Acoustic Propagation ; Acoustic Modeling ; BELLHOP
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2023-01-18
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2022.
    Description: The environmental effects of both increased urbanization and eutrophication are of growing global concern. Coastal areas, like those found on Cape Cod, Massachusetts, often experience severe impacts associated with the biogeochemical effects accompanying increased nitrogen pollution. Cape Cod is home to roughly 1,000 ponds and lakes which play an important role in local ecosystems, but the cycling of nitrogen in these waters is not well understood. The goal of this research is to identify the major biogeochemical cycling processes responsible for the fate of nitrogen in a nitrogen-rich, coastal, stratified pond. The investigation was carried out through regular high-resolution measurement and monitoring of environmental conditions, nitrogen speciation, and isotopic composition over the course of a summer. Elevated nitrogen concentrations coupled with strong redox gradients make Siders Pond an ideal place for studying dynamics of nitrogen transformations, giving insight into nitrogen retention or removal, which influence water quality. These data demonstrate significant dissolved nitrogen loss from the pond over the course of the summer as well as internal nitrogen cycling that promotes dissolved nitrogen accumulation to extreme levels in the deepest depths. The physical dynamics of mixing promote a coupling of nitrification and denitrification across this redox gradient, driving N loss while also supplying the sunlit waters with nutrient-rich deep water. A simple time-resolved box model suggests that approximately 50% of the upwardly delivered N is removed, while the other portion supports recycling through photosynthetic uptake. While dissolved organic nitrogen (DON) is widely considered refractory material and is rarely measured or reported in environmental studies, here there is evidence for a large and dynamic pool of DON within Siders Pond suggesting important dynamics between organic and inorganic pools in regulating N loss. While nitrate is a commonly used measurement for assessing N contamination, this work highlights the parallel importance of monitoring additional species (including ammonium and DON) for determining eutrophication/contamination. A deeper understanding of Siders Pond can be used to elucidate nitrogen cycling dynamics in analogous redox-stratified systems, including other lakes and ponds, or modern ocean regions such as the Santa Barbara and Cariaco Basins and the Baltic and Black Seas.
    Description: National Science Foundation (project number NSF-1924236)
    Keywords: Nitrogen ; Stable isotopes ; Lakes and ponds
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2023-01-18
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2022.
    Description: With the rapid decline of coastal ecosystems such as coral reefs and seagrasses, it is crucial to better understand the health of these ecosystem to prevent future loss. Reactive oxygen speices (ROS), such as superoxide and hydrogen peroxide, play an underappreciated role in both organism health and ecosystem biogeochemical cycles. This thesis lays the foundation to measure and identify ROS production by coral in situ and through genomic analysis while also highlighting the important role that ROS can play within biogeochemical cycling within seagrass ecosystems. To measure in situ extracellular superoxide, we develop the first DIver-operated Submersible Chemiluminescent sensOr (DISCO), enabling high resolution, non-invasive measurements in real time. We further refine DISCO by making it more compact, user-friendly, adaptable, and robust, enabling measurements of superoxide across a diversity of environments. Using DISCO, I observe species-specific variation in extracellular superoxide concentrations associated with healthy coral. Despite these variations across species, bioinformatic analysis of coral proteins reveal that nearly all coral species have the extracellular superoxide-producing enzyme NADPH oxidase (NOX), and thus the genetic potential to produce extracellular superoxide. This suggests that coral species likely exhibit differential NOX regulation and expression as a function of physiological responses to external stressors, which may play a role in coral immunity. I then turn to seagrass ecosystems, where I observe rapid hydrogen peroxide production and decay through predominantly reductive pathways. This has implications on the environmental redox state and biogeochemical cycling, impacting the ecosystem services that seagrasses provide to marine environments and coastal communities. Overall, this thesis highlights the potential role that ROS may be playing in organism and ecosystem health and lays the groundwork to further develop ROS as a tool to protect these coastal ecosystems against further degradation.
    Description: Funding for this work was provided by the following grants: NSF GRFP (2016230168), Schmidt Marine Technology Partners (G-1801-57385 andG-2010-59878), WHOI Ocean Ventures Fund (2020 and 2021), and the MIT Wellington and Irene Loh Fund Fellowship (4000111995).
    Keywords: Reactive oxygen species ; Coral ; Seagrass
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...