ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley
  • 2020-2024  (146)
  • 1990-1994
  • 1955-1959
  • 2022  (146)
  • 1
    Publication Date: 2024-06-20
    Description: Because continuous and high-resolution records are scarce in the polar Urals, a multiproxy study was carried out on a 54 m long sediment succession (Co1321) from Lake Bolshoye Shchuchye. The sedimentological, geochemical, pollen and chironomid data suggest that glaciers occupied the lake's catchment during the cold and dry MIS 2 and document a change in ice extent around 23.5–18 cal ka bp. Subsequently, meltwater input, sediment supply and erosional activity decreased as local glaciers progressively melted. The vegetation around the lake comprised open, herb and grass-dominated tundra-steppe until the Bølling-Allerød, but shows a distinct change to probably moister conditions around 17–16 cal ka bp. Local glaciers completely disappeared during the Bølling-Allerød, when summer air temperatures were similar to today and low shrub tundra became established. The Younger Dryas is confined by distinct shifts in the pollen and chironomid records pointing to drier conditions. The Holocene is characterised by a denser vegetation cover, stabilised soil conditions and decreased minerogenic input, especially during the local thermal maximum between c. 10 and 5 cal ka bp. Subsequently, present-day vegetation developed and summer air temperatures decreased to modern, except for two intervals, which may represent the Little Ice Age and Medieval Warm Period.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-18
    Description: Pronounced glacial and interglacial climate cycles characterized northern ecosystems during the Pleistocene. Our understanding of the resultant community transformations and past ecological interactions strongly depends on the taxa found in fossil assemblages. Here, we present a shotgun metagenomic analysis of sedimentary ancient DNA (sedaDNA) to infer past ecosystem-wide biotic composition (from viruses to megaherbivores) from the Middle and Late Pleistocene at the Batagay megaslump, East Siberia. The shotgun DNA records of past vegetation composition largely agree with pollen and plant metabarcoding data from the same samples. Interglacial ecosystems at Batagay attributed to Marine Isotope Stage (MIS) 17 and MIS 7 were characterized by forested vegetation (Pinus, Betula, Alnus) and open grassland. The microbial and fungal communities indicate strong activity related to soil decomposition, especially during MIS17. The local landscape likely featured more open, herb-dominated areas, and the vegetation mosaic supported birds and small omnivorous mammals. Parts of the area were intermittently/partially flooded as suggested by the presence of water-dependent taxa. During MIS 3, the sampled ecosystems are identified as cold-temperate, periodically flooded grassland. Diverse megafauna (Mammuthus, Equus, Coelodonta) coexisted with small mammals (rodents). The MIS 2 ecosystems existed under harsher conditions, as suggested by the presence of cold-adapted herbaceous taxa. Typical Pleistocene megafauna still inhabited the area. The new approach, in which shotgun sequencing is supported by metabarcoding and pollen data, enables the investigation of community composition changes across a broad range of taxonomic groups and inferences about trophic interactions and aspects of soil microbial ecology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley
    In:  Ecology and Evolution vol. 12 no. e9549 | H2020 European Institute of Innovation and Technology, Grant/Award Number: 813360; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Grant/ Award Number: 16.161.301
    Publication Date: 2024-06-13
    Description: Monitoring community composition of Foraminifera (single-celled marine protists) pro-vides valuable insights into environmental conditions in marine ecosystems. Despitethe efficiency of environmental DNA (eDNA) and bulk-sample DNA (bulk-DNA) me-tabarcoding to assess the presence of multiple taxa, this has not been straightforwardfor Foraminifera partially due to the high genetic variability in widely used ribosomalmarkers. Here, we test the correctness in retrieving foraminiferal communities by me-tabarcoding of mock communities, bulk-DNA from coral reef sediment samples, andeDNA from their associated ethanol preservative using the recently sequenced cy-tochrome c oxidase subunit 1 (COI) marker. To assess the detection success, we com-pared our results with large benthic foraminiferal communities previously reportedfrom the same sampling sites. Results from our mock communities demonstrate thatall species were detected in two mock communities and all but one in the remainingfour. Technical replicates were highly similar in number of reads for each assigned ASVin both the mock communities and bulk-DNA samples. Bulk-DNA showed a signifi-cantly higher species richness than their associated eDNA samples, and also detectedadditional species to what was already reported at the specific sites. Our study con-firms that metabarcoding using the foraminiferal COI marker adequately retrieves thediversity and community composition of both the mock communities and the bulk-DNA samples. With its decreased variability compared with the commonly used nu-clear 18 S rRNA, the COI marker renders bulk-DNA metabarcoding a powerful tool toassess foraminiferal community composition under the condition that the referencedatabase is adequate to the target taxa.
    Keywords: bulk-sample ; DNA ; community composition ; coral reef ; environmental DNA ; foraminifera ; metabarcoding
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-07
    Description: Previous field studies in the Southern Ocean (SO) indicated an increased occurrence and dominance of cryptophytes over diatoms due to climate change. To gain a better mechanistic understanding of how the two ecologically important SO phytoplankton groups cope with ocean acidification (OA) and iron (Fe) availability, we chose two common representatives of Antarctic waters, the cryptophyte Geminigera cryophila and the diatom Pseudo-nitzschia subcurvata. Both species were grown at 2°C under different pCO2 (400 vs. 900 μatm) and Fe (0.6 vs. 1.2 nM) conditions. For P. subcurvata, an additional high pCO2 level was applied (1400 μatm). At ambient pCO2 under low Fe supply, growth of G. cryophila almost stopped while it remained unaffected in P. subcurvata. Under high Fe conditions, OA was not beneficial for P. subcurvata, but stimulated growth and carbon production of G. cryophila. Under low Fe supply, P. subcurvata coped much better with OA than the cryptophyte, but invested more energy into photoacclimation. Our study reveals that Fe limitation was detrimental for the growth of G. cryophila and suppressed the positive OA effect. The diatom was efficient in coping with low Fe, but was stressed by OA while both factors together strongly impacted its growth. The distinct physiological response of both species to OA and Fe limitation explains their occurrence in the field. Based on our results, Fe availability is an important modulator of OA effects on SO phytoplankton, with different implications on the occurrence of cryptophytes and diatoms in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-03
    Description: Every piece of plastic is made up of a unique combination of the host polymer, with some residual monomers or catalysts, as well as chemical additives added during processing of the plastic. This chapter aims to introduce plastic additives with a focus on their chemistry and function, transport and fate, detection in marine environments, and toxicities. The extensive list of additives can be simplified by dividing the types of additives into three groups: functional additives, colorants, and fillers/reinforcements. Plasticizers are added to plastics to improve their flexibility, durability, and elasticity over a broad range of temperatures while also reducing the glass transition temperature and the melt flow. Additives are well known to leach from plastics in the marine environment. Like their plastic counterparts, plastic additives are also susceptible to oxidative degradation and biodegradation. The toxicity of plastic additives is quite variable given the diversity of their chemical classes.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-23
    Description: Boreal forests cover over half of the global permafrost area and protect underlying permafrost. Boreal forest development, therefore, has an impact on permafrost evolution, especially under a warming climate. Forest disturbances and changing climate conditions cause vegetation shifts and potentially destabilize the carbon stored within the vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss induces soil drying of up to 44%, leading to lower active layer thicknesses and abrupt or steady decline of a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, inducing low mortality rates, forests can recover and overpass pre-disturbance leaf area index values. We find that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years after the disturbance. Dryer years can drastically change the direction of the larch forest development within the studied period.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Multi‐Scale Biogeochemical Processes in Soil Ecosystems, Multi‐Scale Biogeochemical Processes in Soil Ecosystems, Hoboken, NJ, Wiley, pp. 157-181, ISBN: 9781119480471
    Publication Date: 2024-04-22
    Description: Tundra is experiencing more intense warming than any other ecosystem on earth. While warming is the most direct effect of climate change on tundra, warming leads to a cascade of environmental changes such as permafrost thaw, altered precipitation regimes, and increased wildfires. This chapter will first focus on how climate change is changing the environment of Arctic and subarctic tundra and then focus on how climate change is altering tundra's carbon, nitrogen, and phosphorus cycles with a focus on soils. Overall, tundra soils are shifting from being a carbon sink into a carbon source as rising temperatures increase microbial activity—a positive feedback to climate change. However, those rising temperatures are also increasing nutrient mineralization rates, which could increase ecosystem carbon storage via enhanced plant productivity as well as increase emissions of nitrous oxide, a powerful greenhouse gas. There is currently a disconnect between the large soil carbon losses measured in many in situ experiments and the strong plant carbon gains predicted by models. Ultimately, more research is needed on the interplay between tundra soils, nutrients, and plants to determine the magnitude of tundra's feedback to climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-17
    Description: The term ‘destructive fishing’ appears in multiple international policy instruments intended to improve outcomes for marine biodiversity, coastal communities and sustainable fisheries. However, the meaning of ‘destructive fishing’ is often vague, limiting effectiveness in policy. Therefore, in this study, we systematically reviewed the use of ‘destructive fishing’ in three record types: academic literature, media articles and policy documents between 1976 and 2020. A more detailed analysis was performed on subsets of these records, considering the extent to which the term is characterised, geographic distribution of use, and specific impacts and practices associated with the term. We found that use of ‘destructive fishing’ relative to the generic term ‘fisheries’ has increased since the 1990s. Records focussed predominantly on fishing practices in South-eastern Asia, followed by Southern Asia and Europe. The term was characterised in detail in only 15% of records. Habitat damage and blast/poison fishing were the most associated ecological impacts and gear/practices, respectively. Bottom trawling and unspecified net fishing were regularly linked to destructive fishing. Importantly, the three record types use the term differently. Academic literature tends to specifically articulate the negative impacts, while media articles focus generally on associated gears/practices. Significant regional variation also exists in how the term is used and what phenomena it is applied to. This study provides evidence and recommendations to inform stakeholders in any future pursuit of a unified definition of ‘destructive fishing’ to support more meaningful implementation of global sustainability goals.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Limnology and Oceanography Methods, Wiley, 20(9), pp. 568-580, ISSN: 1541-5856
    Publication Date: 2024-04-03
    Description: The fluorophore [2-(4-pyridyl)-5{[4-dimethylaminoethyl-aminocarbamoyl-methoxy]phenyl}oxazole], in short PDMPO, is incorporated in newly polymerized silica in diatom frustules and thereby provides a tool to estimate Si uptake, study diatom cell cycles but also determine mortality-independent abundance-based species specific-growth rates in cultures and natural assemblages. In this study, the theoretical framework and applicability of the PDMPO staining technique to estimate diatom species specific-growth rates were investigated. Three common polar diatom species, Pseudo-nitzschia subcurvata, Chaetoceros simplex, and Thalassiosira sp., chosen in order to cover a broad range of species specific frustule and life-cycle characteristics, were incubated over 24 h in control (no PDMPO) and with 0.125 and 0.6 μM PDMPO addition, respectively. Results indicate that specific-growth rates of the species tested were not affected in both treatments with PDMPO addition. The specific-growth rate estimates based on the PDMPO staining patterns (μPDMPO) were comparable and more robust than growth rates estimated from the changes in cell concentrations (μcc). This technique also allowed to investigate and highlight the importance of the illumination cycle (light and dark phases) on cell division in diatoms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-14
    Description: Burial driven recycling is an important process in the natural gas hydrate (GH) systems worldwide, characterized by complex multiphysics interactions like gas migration through an evolving gas hydrate stability zone (GHSZ), competing gas-water-hydrate (i.e., fluid-fluid-solid) phase transitions, locally appearing and disappearing phases, and evolving sediment properties (e.g., permeability, reaction surface area, and capillary entry pressure). Such a recycling process is typically studied in homogeneous or layered sediments. However, there is mounting evidence that structural heterogeneity and anisotropy linked to normal and inclined fault systems or anomalous sediment layers have a strong impact on the GH dynamics. Here, we consider the impacts of such a structurally complex media on the recycling process. To capture the properties of the anomalous layers accurately, we introduce a fully mass conservative, high-order, discontinuous Galerkin (DG) finite element based numerical scheme. Moreover, to handle the rapidly switching thermodynamic phase states robustly, we cast the problem of phase transitions as a set of variational inequalities, and combine our DG discretization scheme with a semi-smooth Newton solver. Here, we present our new simulator, and demonstrate using synthetic geological scenarios, (a) how the presence of an anomalous high-permeability layer, like a fracture or brecciated sediment, can alter the recycling process through flow-localization, and more importantly, (b) how an incorrect or incomplete approximation of the properties of such a layer can lead to large errors in the overall prediction of the recycling process. Key Points Structural heterogeneity linked to inclined fault systems or anomalous sediment layers have a strong impact on the gas hydrate dynamics The presence of anomalous high-permeability layers within gas hydrate stability zone alters the recycling process through flow-localization The presented discontinuous Galerkin scheme is able to accurately capture the gas hydrate recycling processes through strongly anisotropic materials
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...