ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (4,223)
  • 2020-2024  (4,223)
  • 2015-2019  (2)
  • 2005-2009  (2)
  • 2022  (4,223)
  • 1
    Publication Date: 2024-07-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-01
    Description: Highlights • First successful in situ DGT application in the deep ocean. • DGT-lability of dissolved (〈0.2 μm) Cu, Ni, Cd, Mn, As, V, REY differs depending on chemical speciation. • REY in deep ocean water can be almost quantitatively assessed with DGT. • Low Cu availability reflects dominating organic speciation. Abstract Geochemical behaviour and bio-availability of trace metals are closely related to their physical fractionation and chemical speciation. The DGT speciation technique allows the challenging assessment of labile concentrations of Mn, Cd, Cu, Ni, V, As, and REY in ocean waters. In this first deep-water in situ study of DGT-lability, we demonstrate the approach in bottom waters of the Clarion-Clipperton Zone in the central NE Pacific. In the dissolved fraction (〈0.2 μm), 70% to 100% of Cd, Ni, V, and REY, but only 25% of Cu and less than 50% of As were determined, reflecting their prevailing dominance of organic vs. inorganic complexation. This study demonstrates the applicability and sensitivity of DGT-passive samplers for trace metals as a suitable technique in monitoring of anthropogenic activities, such as deep seabed mining, as well as for natural process studies in abyssal environments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-18
    Description: Gypsum makes up about one fifth of giant salt deposits formed by evaporation of seawater throughout Earth’s history. Although thermodynamic calculations and precipitation experiments predict that gypsum precipitates when the salinity of evaporating seawater attains about 110 g kg-1, gypsum deposits of the Mediterranean Salt Giant often bear the geochemical signature of precipitation from less saline water masses. Addressing this geochemical riddle is important because marine gypsum deposition and continental gypsum erosion affect the global carbon cycle. We investigated gypsum deposits formed in the marginal basins of the Mediterranean Sea during the Messinian Salinity Crisis (about 6 million years ago). These often bear low-salinity fluid inclusions and isotopically light crystallization water, confirming previous published reports that the Mediterranean Salt Giant harbors low-salinity gypsum deposits. A geochemical model constrained by fluid inclusion salinity and isotope (87Sr/86Sr, δ34SSO4, δ18OH2O, δDH2O) measurements excludes that Ca2+- and SO42--enriched continental runoff alone provides the trigger for gypsum precipitation at low salinity. We propose that, concurrent with the prevalent evaporative conditions and with Ca2+- and SO42--bearing runoff, the biogeochemical sulfur cycle is capable of producing a spatially-restricted and temporally-transient increase of Ca2+ and SO42- within benthic microbial mats, creating local chemical conditions conductive to gypsum precipitation. This hypothesis is supported by the presence of dense packages of fossils of colorless sulfur bacteria within gypsum in several Mediterranean marginal basins, together with independent geochemical and petrographic evidence for an active biogeochemical sulfur cycle in the same basins. Should this scenario be confirmed, it would expand the range of environments that promote marine gypsum deposition; it would also imply that an additional, biological coupling between the calcium, sulfur and carbon cycles exists.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-02
    Description: Manganese (Mn) is an essential micro-nutrient that can limit or, along with iron (Fe), co-limit phytoplankton growth in the ocean. Glacier meltwater is thought to be a key source of trace metals to high latitude coastal systems, but little is known about the nature of Mn delivered to glacially-influenced fjords and adjacent coastal waters. In this work, we combine in-situ dissolved Mn (dMn) measurements of surface waters with Mn K-edge X-ray absorption spectroscopy (XAS) data of suspended particles in four fjords of West Greenland. Data were collected from transects of up to 100 km in fjords with different underlying bedrock geology from 64 to 70°N. We found that dMn concentrations generally decreased conservatively with increasing salinity (from 80-120 nM at salinity 〈8 to 〈40 nM at salinities 〉25). Dissolved Fe (dFe) trends in these fjords similarly declined with increasing distance from glacier outflows (declining from 〉20 nM to 〈8 nM). However, the dMn/dFe ratio increased rapidly likely due to the greater stability of dMn at intermediate salinities (i.e. 10 – 20) compared to rapid precipitation of dFe across the salinity gradient. The XAS data indicated a widespread presence of Mn(II)-rich suspended particles near fjord surfaces, with structures akin to Mn(II)-bearing phyllosilicates. However, a distinct increase in Mn oxidation state with depth and the predominance of birnessite-like Mn(IV) oxides was observed for suspended particles in a fjord with tertiary basalt geology. The similar dMn behaviour in fjords with different suspended particle Mn speciation (i.e., Mn(II)-bearing phyllosilicates and Mn(IV)-rich birnessite) is consistent with the decoupling of dissolved and particulate Mn and suggests that dMn concentrations on the scale of these fjords are controlled primarily by dilution of a freshwater dMn source rather than exchange between dissolved and particle phases. This work provides new insights into the Mn cycle in high latitude coastal waters, where small changes in the relative availabilities of dMn, dFe and macronutrients may affect the identity of the nutrient(s) proximally limiting primary production.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-23
    Description: Highlights • Climate engineering presents a novel challenge for global environmental governance • Institutional and discursive structures co-shape global environmental governance • A lack of joint analyses of both structures impedes understanding of governance emergence • A joint neo-institutionalist and post-structuralist analysis addresses this gap • Varying structures shape differing climate engineering governance decisions in several forums Abstract The Anthropocene is giving rise to novel challenges for global environmental governance. The barriers and opportunities shaping the ways in which some of these complex environmental challenges become governable on the global level are of increasing academic and practical relevance. In this article, we bring neo-institutionalist and post-structuralist perspectives together in an innovative framework to analyse how both institutional and discursive structures together bound and shape the global governance opportunities which become thinkable and practicable in the face of new global environmental challenges. We apply this framework to explore how governance of climate engineering – large scale, deliberate invention into the global climate system – is being shaped by discursive and institutional structures in three international forums: The London Convention and its Protocol, the Convention on Biological Diversity, and the United Nations Environment Assembly. We illustrate that the ‘degree of fit’ between discursive and institutional structures made climate engineering (un)governable in each of these forums. Furthermore, we find that the ‘type of fit’ set the discursive and institutional conditions of possibility for what type of governance emerged in each of these cases. Based on our findings, we critically discuss the implications for the future governance of climate engineering at the global level.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-07
    Description: Subduction zone volcanoes may show irregular bursts of high-frequency or high-magnitude activity. The andesitic Mt. Tongariro (New Zealand) experienced an unusual 〈200 year-long magmatic flare-up at ~11 ka that produced seven eruption episodes of a higher magnitude (M = 4–5) than seen before or since. This brief sequence produced a total of 4.5 km3 of dominantly tephra fall (Mangamate Formation) sourced by multiple vents aligned along the NNE trending axis of the tectonic Tongariro Graben. The magmatic system responsible for sporadic M = 1–2 eruptions underwent extensive change to feed the flare-up. Petrography and phase equilibria suggest that a coalesced network of magma mush zones formed along the N-S graben axis extending down to ~11 km during the episode. Recharge, mingling and mixing of formerly isolated heterogenous magmas within the plumbing system well before these eruptions is indicated by crystal zonation patterns. Mafic end members are evidenced by Fo86–89 olivine, clinopyroxene with Mg# 〉 85 and calcic plagioclase (An73–89), while evolved magma end members contained Mg# 〈 75 clinopyroxene and An56–63 plagioclase. Rim-zoning of these phases reflect timespans for equilibration of evolved and mafic crystals to a hybrid melt. The whole-rock compositions of lapilli reflect the hybrid basaltic andesite to andesite, but show diverse glass compositions (56–72 wt% SiO2) implying that magma homogenisation was incomplete before eruption. Crystal-melt equilibria of olivine and clinopyroxene rims reveal polybaric crystallisation, showing mean depths of ~8.5 km (230 ± 70 MPa) at temperatures between 1000 and 1150 °C. At the northern margins of the system, volatile-rich amphibole-bearing magmas were erupted for the first and last eruption of the series, creating stable Plinian eruption styles. This flare-up was previously interpreted as tectonically controlled, however, there were low tectonic extension rates at that time. Hence, we propose instead that magma pressure build-up and recharge beneath Mt. Tongariro drove the inflation and homogenisation of the magma system, fueling the ~200 year-long flare-up. Subsequently, the magma supply system returned to pre-Mangamate activity levels, so that vigorous recharge would be required for a return to 〉M 4 eruptions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-03
    Description: Rapid changes of the biosphere observed in recent years are caused by both small and large scale drivers, like shifts in temperature, transformations in land-use, or changes in the energy budget of systems. While the latter processes are easily quantifiable, documentation of the loss of biodiversity and community structure is more difficult. Changes in organismal abundance and diversity are barely documented. Censuses of species are usually fragmentary and inferred by often spatially, temporally and ecologically unsatisfactory simple species lists for individual study sites. Thus, detrimental global processes and their drivers often remain unrevealed. A major impediment to monitoring species diversity is the lack of human taxonomic expertise that is implicitly required for large-scale and fine-grained assessments. Another is the large amount of personnel and associated costs needed to cover large scales, or the inaccessibility of remote but nonetheless affected areas. To overcome these limitations we propose a network of Automated Multisensor stations for Monitoring of species Diversity (AMMODs) to pave the way for a new generation of biodiversity assessment centers. This network combines cutting-edge technologies with biodiversity informatics and expert systems that conserve expert knowledge. Each AMMOD station combines autonomous samplers for insects, pollen and spores, audio recorders for vocalizing animals, sensors for volatile organic compounds emitted by plants (pVOCs) and camera traps for mammals and small invertebrates. AMMODs are largely self-containing and have the ability to pre-process data (e.g. for noise filtering) prior to transmission to receiver stations for storage, integration and analyses. Installation on sites that are difficult to access require a sophisticated and challenging system design with optimum balance between power requirements, bandwidth for data transmission, required service, and operation under all environmental conditions for years. An important prerequisite for automated species identification are databases of DNA barcodes, animal sounds, for pVOCs, and images used as training data for automated species identification. AMMOD stations thus become a key component to advance the field of biodiversity monitoring for research and policy by delivering biodiversity data at an unprecedented spatial and temporal resolution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-30
    Description: Highlights • The Okorusu complex in NE Etendeka have Gough-type isotopic composition. • Messum igneous complex in SW Etendeka show a Doros/Tafelkop-type composition. • Both Gough- and Doros-type components derived from the Tristan-Gough plume. • Doros-type volcanism is surrounded by Gough-type volcanism. • The head-stage of Tristan-Gough plume coincide with the concentric zonation model. Abstract The Etendeka large igneous province in central Namibia is believed to be caused by widespread melting of the Tristan/Gough mantle plume head between ∼137 and 123 Ma ago. To explain the observed compositional variations of the Etendeka flood basalts, a laterally-zoned plume head has been proposed. Here we present new (major and trace element and Sr-Nd-Pb-O-C isotope) geochemical data from the Okorusu and Messum carbonatitic and silica-undersaturated rocks. Okorusu carbonatites, located at the far eastern end of the Etendeka province, have a Gough-type enriched mantle one (EM1) composition, consistent with derivation from a common source with the northern Etendeka flood basalts, Walvis Ridge and Gough (southern) hotspot subtrack of the southern Atlantic Guyot Province including Gough Island. The Messum basanite, erupted directly after the Etendeka event near the central coast of western Namibia, has a different EM1 type flavor (with more radiogenic Nd, less radiogenic Sr and thorogenic Pb isotopes), similar to the Doros, Tafelkop and Horingbaai formations of the Etendeka flood basalts. Combining our new findings with published data from flood basalts, carbonatites and silica-undersaturated rocks from the region, we propose a concentric zonation model for the postulated plume head with the isotopically Gough-type EM1 plume mantle enclosing a blob of Doros-type EM1 plume mantle.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-09
    Description: Epibenthic dinoflagellates occur globally and include many toxin-producing species of concern to human health and benthic ecosystem function. Such benthic harmful algal blooms (BHABs) have been well described from tropical and sub-tropical coastal environments, but assessments from north temperate waters, e.g., northern Europe, and polar regions are scarce. The present study addressed the biodiversity and distribution of potentially toxic epibenthic dinoflagellate populations along the west coast of Sweden (Kattegat-Skagerrak) by morphological and molecular criteria. Morphological analysis conducted by light- and electron-microscopy was then linked by DNA barcoding of the V4 region of 18S rRNA gene sequences to interpret taxonomic and phylogenetic relationships. The presence of two potentially toxigenic epibenthic dinoflagellates, Prorocentrum lima (Ehrenberg) F.Stein and Coolia monotis Meunier was confirmed, along with a description of their spatial and temporal distribution. For P. lima, one third of the cell abundance values exceeded official alarm thresholds for potentially toxic BHAB events (〉1000 cells gr–1 of macroalgae fresh weight). The same species were recorded consecutively for two summers, but without significant temporal variation in cell densities. SEM analyses confirmed the presence of other benthic Prorocentrum species: P. fukuyoi complex, P. cf. foraminosum and P. cf. hoffmannianum. Analyses of the V4 region of the 18S rRNA gene also indicated the presence P. compressum, P. hoffmannianum, P. foraminosum, P. fukuyoi, and P. nanum. These findings provide the first biogeographical evidence of toxigenic benthic dinoflagellates along the west coast of Sweden, in the absence of ongoing monitoring to include epibenthic dinoflagellates. Harmful events due to the presence of Coolia at shellfish aquaculture sites along the Kattegat-Skagerrak are likely to be rather marginal because C. monotis is not known to be toxigenic. In any case, as a preliminary assessment, the results highlight the risk of diarrhetic shellfish poisoning (DSP) events caused by P. lima, which may affect the development and sustainability of shellfish aquaculture in the region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-09
    Description: The marine dinoflagellate Alexandrium Halim represents perhaps the most significant and intensively studied genus with respect to species diversity, life history strategies, toxigenicity, biogeographical distribution, and global magnitude and consequences harmful algal blooms (HABs). The socioeconomic impacts, environmental and human health risks, and mitigation strategies for toxigenic Alexandrium blooms have also been explored in recent years. Human adaptive actions based on future scenarios of bloom dynamics and shifts in biogeographical distribution under climate-change parameters remain under development and not yet implemented on a regional scale. In the CoCliME (Co-development of climate services for adaptation to changing marine ecosystems) project these issues were addressed with respect to past, current and anticipated future status of key HAB genera and expected benefits of enhanced monitoring. Data on the distribution and frequency of Alexandrium blooms related to paralytic shellfish toxin (PST) events from key CoCliME Case Study areas, comprising the North Sea and adjacent Kattegat-Skagerrak, Norwegian Sea, and Baltic Sea, and eastern North Atlantic marginal seas, were evaluated in a contemporary and historical context over the past several decades. The first evidence of possible biogeographical expansion of Alexandrium taxa into eastern Arctic gateways was provided from DNA barcoding signatures. Various key climate change indicators, such as salinity, temperature, and water-column stratification, relevant to Alexandrium bloom initiation and development were identified. The possible influence of changing variables on bloom dynamics, magnitude, frequency and spatial and temporal distribution were interpreted in the context of regional ocean climate models. These climate change impact indicators may play key roles in selecting for the occurrence and diversity of Alexandrium species within the broader microeukaryote communities. For example, shifts to higher temperature and lower salinity regimes predicted for the southern North Sea indicate the potential for increased Alexandrium blooms, currently absent from this area. Ecological and socioeconomic impacts of Alexandrium blooms and effects on fisheries and aquaculture resources and coastal ecosystem function are evaluated, and, where feasible, effective adaptation strategies are proposed herein as emerging climate services.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...