ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.07. Tectonophysics  (2)
  • Frontiers Media S.A.  (2)
  • American Institute of Physics
  • American Meteorological Society (AMS)
  • PANGAEA
  • 2020-2023  (2)
  • 1980-1984
  • 1925-1929
  • 2022  (2)
  • 1
    Publication Date: 2022-03-07
    Description: Coastal and ocean island volcanoes are renowned for having unstable flanks. This can lead to flank deformation on a variety of temporal and spatial scales ranging from slow creep to catastrophic sector collapse. A large section of these unstable flanks is often below sea level, where information on the volcano-tectonic structure and ground deformation is limited. Consequently, kinematic models that attempt to explain measured ground deformation onshore associated with flank instability are poorly constrained in the offshore area. Here, we attempt to determine the locations and the morpho-tectonic structures of the boundaries of the submerged unstable southeastern flank of Mount Etna (Italy). The integration of new marine data (bathymetry, microbathymetry, offshore seismicity, reflection seismic lines) and published marine data (bathymetry, seafloor geodesy, reflection seismic lines) allows identifying the lineament north of Catania Canyon as the southern lateral boundary with a high level of confidence. The northern and the distal (seaward) boundaries are less clear because no microbathymetric or seafloor geodetic data are available. Hypotheses for their locations are presented. Geophysical imaging suggests that the offshore Timpe Fault System is a shallow second-order structure that likely results from extensional deformation within the moving flank. Evidence for active uplift and compression upslope of the amphitheater-shaped depression from seismic data along with subsidence of the onshore Giarre Wedge block observed in ground deformation data leads us to propose that this block is a rotational slump, which moves on top of the large-scale instability. The new shoreline-crossing structural assessment may now inform and improve kinematic models.
    Description: Published
    Description: 810790
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: seafloor ; fault ; flank dynamics ; hydroacoustic ; geodesy ; seismic profiles ; 04.07. Tectonophysics ; 04.08. Volcanology ; 04.06. Seismology ; 04.02. Exploration geophysics ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-17
    Description: Forecasting earthquakes is a challenging scientific task, due to the intrinsic complexity of the problem, as well as to the limited size and different accuracy of available observations. During the last decades increasing efforts have been devoted by geophysical research in an attempt to answer the following fundamental questions: 1) Which are the physical processes that take place in the Earth crust that are relevant for an earthquake to nucleate? 2) How can we observe, describe and model them statistically and physically? Although a clear univocal picture is still missing, a large amount of data and long-term observations accumulated over the time, as well as new methodological approaches, which eventually allow for development and verification of theoretical models. Observations and physical models suggest that several processes in the Earth’s lithosphere are predictable, but after substantial averaging and up to a limit. Accordingly, earthquake forecasting requires a holistic approach, and should be posed as an integrated, multi-scale process, narrowing down the magnitude range, territory, and time of expectation, all within the limits imposed by physics and data uncertainties. The understanding of governing laws, from long-term tectonic loading and slow nucleation to rapid rupture propagation, may contribute to estimate the stress state and temporal evolution of geophysical observables around seismically active areas.
    Description: Published
    Description: 793911
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Keywords: earthquake preparation processes, stress field variations, earthquake source physics, earthquake forecasting, test site areas ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...