ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mixing  (3)
  • Cross-shelf exchange  (2)
  • American Geophysical Union  (5)
  • American Institute of Physics
  • American Meteorological Society (AMS)
  • Nature Research
  • PANGAEA
  • 2020-2023  (5)
  • 1980-1984
  • 1925-1929
  • 2022  (5)
Collection
Publisher
Years
  • 2020-2023  (5)
  • 1980-1984
  • 1925-1929
Year
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(1), (2022): e2021JC017927, https://doi.org/10.1029/2021JC017927.
    Description: Observations and high-resolution numerical modeling are used to investigate the dynamical processes related to the initiation of an advective Marine Heatwave in the Middle Atlantic Bight of the Northwest Atlantic continental shelf. Both the observations and the model identify two significant cross-shelf intrusions in November 2016 and January 2017, with the latter inducing large-magnitude water mass anomalies across the shelf. Model prognostic fields reveal the importance of the combination of cyclonic eddies or ringlets and upwelling-favorable winds in producing the large-distance cross-shelf penetration and temperature/salinity anomalies. The cyclonic eddies in close proximity to the shelfbreak set up local along-isobath pressure gradients and provide favorable conditions for the intensification of the shelfbreak front, both processes driving cross-isobath intrusions of warm, salty offshore water onto the outer continental shelf. Subsequently, strong and persistent upwelling-favorable winds drive a rapid, bottom intensified cross-shelf penetration in January 2017 composed of the anomalous water mass off the shelfbreak. The along-shelf settings including realistic representation of bathymetric features are essential in the characteristics of the cross-shelf penetration. The results highlight the importance of smaller scale cyclonic eddies and the intricacy of the interplay between multiple processes to drive significant cross-shelf events.
    Description: This work was supported by Woods Hole Oceanographic Institution (WHOI) Independent Research and Development (IR&D) award and National Oceanic and Atmospheric Administration (NOAA) Climate Program Office (CPO) Climate Variability and Predictability (CVP) program under grant NA20OAR4310398. Numerical modeling work was conducted at WHOI High-Performance Computing cluster Poseidon with startup support to Ke Chen.
    Description: 2022-06-08
    Keywords: Drivers of Marine heatwave ; Warm core rings and cyclonic eddies ; Shelfbreak front and frontogenesis ; Pressure gradient setup ; Wind-driven upwelling and bottom intrusion ; Cross-shelf exchange
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(4), (2022): e2021JC018246, https://doi.org/10.1029/2021jc018246.
    Description: Storm surge barriers are increasingly being considered as risk mitigation measures for coastal population centers. During non-storm periods, permanent barrier infrastructure reduces the flow cross-sectional area and affects tidal exchange. Effects of barrier structures on estuarine tidal and salinity dynamics have not been extensively examined, particularly for partially mixed estuaries. A nested, high-resolution model is used to characterize impacts of a potential storm surge barrier near the mouth of the Hudson River estuary. Maximum tidal velocities through barrier openings are more than double those in the base case. Landward of the barrier, tidal amplitude decreases on average by about 6% due to increased drag. The drag coefficient with the barrier is about 5 times greater than the base case due primarily to form drag from flow separation at barrier structures rather than increased bottom friction. The form drag scales with barrier geometry similar to previous studies of flow around headlands. Tidal water levels are reduced particularly during spring tides, such that marsh inundation frequency is reduced up to 25%. Strong tidal velocities through barrier openings enhance salinity mixing locally, but overall mixing in the estuary decreases due to reduced tidal velocities. Correspondingly, stratification decreases near the barrier and increases landward in the estuary. The salinity intrusion length increases by 5%–15% depending on discharge due to the decreased mixing and increased exchange flow. Exchange flow increases near the barrier due reflux into the lower layer with the increased mixing, which has the potential to increase estuarine residence times.
    Description: Funding from Hudson Research Foundation (Award #003/19A).
    Description: 2022-10-11
    Keywords: Storm surge barrier ; Form drag ; Mixing ; Stratification ; Exchange flow ; Salinity intrusion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(12), (2021): e2021JC017989, https://doi.org/10.1029/2021JC017989.
    Description: Gulf Stream warm-core rings (WCRs) impinging onto the Mid-Atlantic Bight (MAB) shelf edge can induce substantial water exchange between the shelf and slope seas. Combining satellite imagery and idealized ocean models, this study investigates the long-neglected influence of submarine canyons on the WCR impingement process. Satellite images show onshore intrusion of the WCR water concentrated near the MAB shelf-break canyons, indicating canyon-induced enhancement of cross-shelf exchange. Model simulations of the ring-canyon interaction qualitatively reproduce the observed pattern and show greatly enhanced vertical motions and cross-shelf transport in a canyon. The ring-induced transient flow in a canyon resolved by the model is consistent with the three-dimensional canyon circulation driven by ambient along-slope steady flows as depicted in the literature. Cross-isobath flows occur over both canyon slopes with a strong upwelling onshore flow over the slope upstream to the coastal-trapped wave propagation (the upwave slope) and a weak downwelling offshore flow over the downwave slope. To conserve potential vorticity, a subsurface-intensified cyclonic eddy is formed inside the canyon, which interacts with the sloping bottom and enhances the upwelling onshore flow over the upwave slope. The upwelled deep ring water is transported either back offshore by the ring-edge current on the upwave side of the canyon or across the canyon onto the downwave shelf forming a localized bulge pattern. While the former is an ephemeral onshore transport process, the latter represents a more sustained onshore transport of the ring water, both of which have major implication for ecosystem dynamics at the shelf edge.
    Description: XL was supported by the China Scholarship Council; ZR was supported by the National Key Research and Development Program of China (2016YFC1402000). This work was also support by the WHOI-OUC Collaborative Initiative Program.
    Description: 2022-06-13
    Keywords: Warm-core ring ; Submarine canyon ; Topographic influence ; Cross-shelf exchange ; Upwelling ; Eddy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(5), (2022): e2021JC018056, https://doi.org/10.1029/2021jc018056.
    Description: As Arctic sea ice declines, wind energy has increasing access to the upper ocean, with potential consequences for ocean mixing, stratification, and turbulent heat fluxes. Here, we investigate the relationships between internal wave energy, turbulent dissipation, and ice concentration and draft using mooring data collected in the Beaufort Sea during 2003–2018. We focus on the 50–300 m depth range, using velocity and CTD records to estimate near-inertial shear and energy, a finescale parameterization to infer turbulent dissipation rates, and ice draft observations to characterize the ice cover. All quantities varied widely on monthly and interannual timescales. Seasonally, near-inertial energy increased when ice concentration and ice draft were low, but shear and dissipation did not. We show that this apparent contradiction occurred due to the vertical scales of internal wave energy, with open water associated with larger vertical scales. These larger vertical scale motions are associated with less shear, and tend to result in less dissipation. This relationship led to a seasonality in the correlation between shear and energy. This correlation was largest in the spring beneath full ice cover and smallest in the summer and fall when the ice had deteriorated. When considering interannually averaged properties, the year-to-year variability and the short ice-free season currently obscure any potential trend. Implications for the future seasonal and interannual evolution of the Arctic Ocean and sea ice cover are discussed.
    Description: This work was supported by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. S. T. Cole was supported by Office of Naval Research grant N00014-16-1-2381.
    Description: 2022-10-14
    Keywords: Arctic ; Internal waves ; Mixing ; Sea ice ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-12-24
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(7), (2022): e2021JC018333, https://doi.org/10.1029/2021JC018333.
    Description: As part of a project focused on the coastal fisheries of Isla Natividad, an island on the Pacific coast of Baja California, Mexico, we conducted a 2-1/2 year study of flows at two sites within the island's kelp forests. At one site (Punta Prieta), currents are tidal, whereas at the other site (Morro Prieto), currents are weaker and may be more strongly influenced by wind forcing. Satellite estimates of the biomass of the giant kelp (Macrocystis pyrifera) for this period varied between 0 (no kelp) and 3 kg/m2 (dense kelp forest), including a period in which kelp entirely was absent as a result of the 2014–2015 “Warm Blob” in the Eastern Pacific. During this natural “deforestation experiment”, alongshore velocities at both sites when kelp was present were substantially weaker than when kelp was absent, with low-frequency alongshore currents attenuated more than higher frequency ones, behavior that was the same at both sites despite differences in forcing. The attenuation of cross-shore flows by kelp was less than alongshore flows; thus, residence times for water inside the kelp forest, which are primarily determined by cross-shore velocities, were only weakly affected by the presence or absence of kelp. The flow changes we observed in response to changes in kelp density are important to the biogeochemical functioning of the kelp forest in that slower flows imply longer residence times, and, are also ecologically relevant in that reduced tidal excursions may lead to more localized recruitment of planktonic larvae.
    Description: The work we describe here was supported by NSF grants DEB 1212124, OCE 1416934, OCE 1736830, and OCE 2022927, by an equipment grant from the Kuwait Foundation for the Advancement of Sciences, and through grants from the Marisla Foundation, Packard Foundation, and Walton Family Foundation.
    Description: 2022-12-24
    Keywords: Kelp ; Tides ; Coastal circulation ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...