ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science
  • American Chemical Society
  • American Geophysical Union
  • BioMed Central
  • Nature Publishing Group
  • 2020-2024  (4)
  • 2020-2023  (98)
  • 1945-1949
  • 1935-1939
  • 2022  (102)
  • 2022  (102)
Collection
Years
  • 2020-2024  (4)
  • 2020-2023  (98)
  • 1945-1949
  • 1935-1939
Year
  • 1
    Publication Date: 2024-02-07
    Description: Marine sponges (phylum Porifera) form symbioses with diverse microbial communities that can be transmitted between generations through their developmental stages. Here, we integrate embryology and microbiology to review how symbiotic microorganisms are transmitted in this early-diverging lineage. We describe that vertical transmission is widespread but not universal, that microbes are vertically transmitted during a select developmental window, and that properties of the developmental microbiome depends on whether a species is a high or low microbial abundance sponge. Reproduction, development, and symbiosis are thus deeply rooted, but why these partnerships form remains the central and elusive tenet of these developmental symbioses.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-10
    Description: Muography represents a recent and innovative tool for investigating the interior of active volcanoes. However, when dealing with frequently erupting open-vent volcanoes such as Stromboli, any result should take into con- sideration the structural and morphology changes caused by the eruptive activity. This may cause either summit collapses by magma withdrawal, or morphology growth by the accumulations of a fallout from the explosive activity, or more often a combination of both. In this chapter, we present an integration of various techniques, comprising muography and digital elevation model reconstruction, together with GBInSAR ground deformation and volcano seismicity, to reconstruct the geometry of the shallow magma supply system of the volcano and its changes in time. We show how muography can display the interior of the volcano as well as its outer growth, being sensitive to all volume changes that occurred between the framed surface and the detector. This was discovered in Stromboli by comparing digital topography in the interval between 2010 and 2012, when the rapid growth of the volcano summit by the accumulation of ballistic products in the area between the crater zone and the muon detec- tor occurred. This deposit, together with the filling in of the graben-like depression, formed during the 2007 eruption, by fallout during the persistent explosive activity, contributed to generating a remarkable anomaly in the summit area of the volcano visualized by muography. In addition, the shallow feeding system of the volcano was surveyed by GBInSAR and seismicity, which allowed us to reconstruct its path up to a depth of a few hundred meters.
    Description: Published
    Description: 75-91
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Keywords: Stromboli volcano ; Shallow supply system ; Muography of active volcanoes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union, 37(2), pp. e2020PA003953, ISSN: 2572-4517
    Publication Date: 2022-02-15
    Description: Cenozoic climate changes have been linked to tectonic activity and variations in atmospheric CO2 concentrations. Here we present Miocene and Pliocene sensitivity experiments performed with the climate model COSMOS. The experiments contain changes with respect to paleogeography, ocean gateway configuration, and atmospheric CO2 concentrations, as well as a range of vertical mixing coefficients in the ocean. For the Mid-Miocene, we show that the impact of ocean mixing on surface temperature is comparable to the effect of the possible range in reconstructed CO2 concentrations. In combination with stronger vertical mixing, relatively moderate CO2-concentrations of 450 ppmv enable global mean surface, deep-water and meridional temperature characteristics representative of Mid-Miocene Climatic Optimum (MMCO) reconstructions. The Miocene climate shows a reduced meridional temperature gradient and reduced seasonality. In the case of enhanced mixing, surface and deep ocean temperatures show significant warming of up to 5-10°C and an Arctic temperature anomaly of more than 12°C. In the Pliocene simulations, the impact of vertical mixing and CO2 is less important for the deep ocean, which we interpret as a different sensitivity dependence on the background state and mixed layer dynamics. We find a significant reduction in surface albedo and effective emissivity for either a high level of atmospheric CO2 or increased vertical mixing. Our mixing sensitivity experiments provide a warm deep ocean via ocean heat uptake. We propose that the mixing hypothesis can be tested by reconstructions of the thermocline and seasonal paleoclimate data indicating a lower seasonality relative to today.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-14
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(7), (2022): e2021JC018276, https://doi.org/10.1029/2021JC018276.
    Description: Coastal communities across the United States (U.S.) are experiencing an increase in the frequency of high-tide flooding (HTF). This increase is mainly due to sea-level rise (SLR), but other factors such as intra- to inter-annual mean sea level variability, tidal anomalies, and non-tidal residuals also contribute to HTF events. Here we introduce a novel decomposition approach to develop and then analyze a new database of different sea-level components. Those components represent processes that act on various timescales to contribute to HTF along the U.S. coastline. We find that the relative importance of components to HTF events strongly varies in space and time. Tidal anomalies contribute the most along the west and northeast coasts, where HTF events mostly occur in winter. Non-tidal residuals are most important along the Gulf of Mexico and mid-Atlantic coasts, where HTF events mostly occur in fall. We also quantify the minimum number of components that were required to cause HTF events in the past and how this number changed over time. The results highlight that at present, due to SLR, fewer components are needed to combine to push water levels above HTF thresholds, but tidal anomalies alone are still not sufficient to reach HTF thresholds in most locations. Finally, we explore how co-variability between different components leads to compounding effects. In some places, positive correlation between sea-level components leads to significantly more HTF events than would be expected if sea-level components were uncorrelated, whereas in other places negative correlation leads to fewer HTF events.
    Description: his work was supported by NASA's Sea Level Change Team award number 80NSSC20K1241. S.L. also acknowledges support by the China Scholarship Council (no. 201904910413) and the Ministry of Science and Technology of the People's Republic of China (grant no. 2011YQ120045).
    Description: 2023-01-14
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dzwonkowski, B., Fournier, S., Lockridge, G., Coogan, J., Liu, Z., & Park, K. Cascading weather events amplify the coastal thermal conditions prior to the shelf transit of Hurricane Sally (2020). Journal of Geophysical Research: Oceans, 126(12), (2021): e2021JC017957, https://doi.org/10.1029/2021JC017957.
    Description: Changes in tropical cyclone intensity prior to landfall represent a significant risk to human life and coastal infrastructure. Such changes can be influenced by shelf water temperatures through their role in mediating heat exchange between the ocean and atmosphere. However, the evolution of shelf sea surface temperature during a storm is dependent on the initial thermal conditions of the water column, information that is often unavailable. Here, observational data from multiple monitoring stations and satellite sensors were used to identify the sequence of events that led to the development of storm-favorable thermal conditions in the Mississippi Bight prior to the transit of Hurricane Sally (2020), a storm that rapidly intensified over the shelf. The annual peak in depth-average temperature of 〉29°C that occurred prior to the arrival of Hurricane Sally was the result of two distinct warming periods caused by a cascade of weather events. The event sequence transitioned the system from below average to above average thermal conditions over a 25-day period. The transition was initiated with the passage of Hurricane Marco (2020), which mixed the upper water column, transferring heat downward and minimizing the cold bottom water reserved over the shelf. The subsequent reheating of the upper ocean by surface heat flux from the atmosphere, followed by downwelling winds, effectively elevated shelf-wide thermal conditions for the subsequent storm, Hurricane Sally. The coupling of climatological downwelling winds and warm sea surface temperature suggest regions with such characteristics are at an elevated risk for storm intensification over the shelf.
    Description: his paper is a result of research funded by the National Oceanic and Atmospheric Administration's RESTORE Science Program under awards NA17NOS4510101 and NA19NOS4510194 to the University of South Alabama and Dauphin Island Sea Lab and by the NASA Physical Oceanography program under award 80NSSC21K0553 and WBS 281945.02.25.04.67 to the University of South Alabama and the Jet Propulsion Laboratory. A portion of this work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We thank the NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group for the Moderate-resolution Imaging Spectroradiometer (MODIS) Terra ocean color data; 2014 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. 10.5067/AQUA/MODIS/MODIS_OC.2014.0.
    Keywords: Tropical cyclones ; Coastal ocean ; Cascading events ; Temperature ; Downwelling ; Hurricane Sally
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49, (2022): e2021GL096180, https://doi.org/10.1029/2021gl096180.
    Description: In the subtropical gyres, phytoplankton rely on eddies for transporting nutrients from depth to the euphotic zone. But, what controls the rate of nutrient supply for new production? We show that vertical nutrient flux both depends on the vertical motion within the eddying flow and varies nonlinearly with the phytoplankton growth rate. Flux is maximized when the growth rate matches the inverse of the decorrelation timescale for vertical motion. Using a three-dimensional ocean model and a linear nutrient uptake model, we find that phytoplankton productivity is maximized for a growth rate of 1/3 day−1, which corresponds to the timescale of submesoscale dynamics. Variability in the frequency of vertical motion across different physical features of the flow favors phytoplankton production with different growth rates. Such a growth-transport feedback can generate diversity in the phytoplankton community structure at submesoscales and higher net productivity in the presence of community diversity.
    Description: MAF and AM were funded by N00014-16-1-3130 (ONR) and MAF was also supported by the Martin Fellowship, MIT.
    Description: 2022-07-20
    Keywords: Vertical velocity ; Nutrient supply ; Phytoplankton growth ; Diversity ; New production
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goodkin, N. F., Samanta, D., Bolton, A., Ong, M. R., Hoang, P. K., Vo, S. T., Karnauskas, K. B., & Hughen, K. A. Natural and anthropogenic forcing of multi-decadal to centennial scale variability of sea surface temperature in the South China Sea. Paleoceanography and Paleoclimatology, 36(10), (2021): e2021PA004233, https://doi.org/10.1029/2021PA004233.
    Description: Four hundred years of reconstructed sea surface temperatures (SSTs) from a coral located off the coast of Vietnam show significant multi-decadal to centennial-scale variability in wet and dry seasons. Wet and dry season SST co-vary significantly at multi-decadal timescales, and the Interdecadal Pacific Oscillation (IPO) explains the majority of variability in both seasons. A newly reconstructed wet season IPO index was compared to other IPO reconstructions, showing significant long-term agreement with varying amplitude of negative IPO signals based on geographic location. Dry season SST also correlates to sea level pressure anomalies and the East Asian Winter Monsoon, although with an inverse relationship from established interannual behavior, as previously seen with an ocean circulation proxy from the same coral. Centennial-scale variability in wet and dry season SST shows 300 years of near simultaneous changes, with an abrupt decoupling of the records around 1900, after which the dry season continues a long-term cooling trend while the wet season remains almost constant. Climate model simulations indicate greenhouse gases as the largest contributor to the decoupling of the wet and dry season SSTs and demonstrate increased heat advection to the western South China Sea in the wet season, potentially disrupting the covariance in seasonal SST.
    Description: This research was supported by a Singapore National Research Fellowship to N.F. Goodkin (NRFF-2012-03) as administered by the Earth Observatory of Singapore and by a Singapore Ministry of Education Academic Research Fund Tier 2 award to N.F. Goodkin, K.A. Hughen, and K.B. Karnauskas (MOE-2016-T2-1-016). D. Samanta was partially supported by a Singapore Ministry of Education Tier 3 award (MOE2019-T3-1-004).
    Keywords: IPO ; Coral ; Monsoon ; SST
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gawarkiewicz, G., Fratantoni, P., Bahr, F., & Ellertson, A. Increasing frequency of mid‐depth salinity maximum intrusions in the Middle Atlantic Bight. Journal of Geophysical Research: Oceans, 127(7), (2022): e2021JC018233, https://doi.org/10.1029./2021jc018233.
    Description: Shelfbreak exchange processes have been studied extensively in the Middle Atlantic Bight. An important process occurring during stratified conditions is the Salinity Maximum Intrusion. These features are commonly observed at the depth of the seasonal pycnocline, and less frequently at the surface and bottom. Data collected from NOAA's National Marine Fisheries Service Ecosystem Monitoring program as well as data collected from the fishing industry in Rhode Island show that the middepth intrusions are now occurring much more frequently than was reported in a previous climatology of the intrusions (Lentz, 2003, https://doi.org/10.1029/2003JC001859). The intrusions have a greater salinity difference from ambient water and penetrate large distances shoreward of the shelf break relative to the earlier climatology. The longer term data from the Ecosystem Monitoring program indicates that the increase in frequency occurred in 2000, and thus may be linked to a recent regime shift in the annual formation rate of Warm Core Rings by the Gulf Stream. Given the increased frequency of these salty intrusions, it will be necessary to properly resolve this process in numerical simulations in order to account for salt budgets for the continental shelf and slope.
    Description: Data collection for the Shelf Research Fleet and salary for G. Gawarkiewicz, F. Bahr, and A. Ellertson were provided by the van Beuren Charitable Foundation of Newport, RI. G. Gawarkiewicz, F. Bahr, and A. Ellertson were also supported in analysis of this data by NSF grant OCE-1851261.
    Keywords: Hydrography ; Middle Atlantic Bight ; Shelfbreak front ; Warm core ring ; Intrusion ; Continental shelf processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, O., Lee, T., Piecuch, C., Fukumori, I., Fenty, I., Frederikse, T., Menemenlis, D., Ponte, R., & Zhang, H. Local and remote forcing of interannual sea‐level variability at Nantucket Island. Journal of Geophysical Research: Oceans, 127(6), (2022): e2021JC018275, https://doi.org/10.1029/2021jc018275.
    Description: The relative contributions of local and remote wind stress and air-sea buoyancy forcing to sea-level variations along the East Coast of the United States are not well quantified, hindering the understanding of sea-level predictability there. Here, we use an adjoint sensitivity analysis together with an Estimating the Circulation and Climate of the Ocean (ECCO) ocean state estimate to establish the causality of interannual variations in Nantucket dynamic sea level. Wind forcing explains 67% of the Nantucket interannual sea-level variance, while wind and buoyancy forcing together explain 97% of the variance. Wind stress contribution is near-local, primarily from the New England shelf northeast of Nantucket. We disprove a previous hypothesis about Labrador Sea wind stress being an important driver of Nantucket sea-level variations. Buoyancy forcing, as important as wind stress in some years, includes local contributions as well as remote contributions from the subpolar North Atlantic that influence Nantucket sea level a few years later. Our rigorous adjoint-based analysis corroborates previous correlation-based studies indicating that sea-level variations in the subpolar gyre and along the United States northeast coast can both be influenced by subpolar buoyancy forcing. Forward perturbation experiments further indicate remote buoyancy forcing affects Nantucket sea level mostly through slow advective processes, although coastally trapped waves can cause rapid Nantucket sea level response within a few weeks.
    Description: This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). CGP was supported by NASA Sea Level Change Team awards 80NSSC20K1241 and 80NM0018D0004.
    Keywords: Sea level ; Adjoint sensitivity ; Forcing mechanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(10), (2021): e2021GB007058, https://doi.org/10.1029/2021GB007058.
    Description: Continental shelves are important sources of iron (Fe) in the land-dominated Arctic Ocean. To understand the export of Fe from the Arctic to Baffin Bay (BB) and the North Atlantic, we studied the alteration of the Fe signature in waters transiting the Canadian Arctic Archipelago (CAA). During its transit through the CAA, inflowing Arctic Waters from the Canada Basin become enriched in Fe as result of strong sediment resuspension and enhanced sediment-water interactions (non-reductive dissolution). These high Fe waters are exported to BB, where approximately 10.7 kt of Fe are delivered yearly from Lancaster Sound. Furthermore, if the two remaining main CAA pathways (Jones Sound and Nares Strait) are included, this shelf environment would be a dominant source term of Fe (dFe + pFe: 26–90 kt y−1) to Baffin Bay. The conservative Fe flux estimate (26 kt y−1) is 1.7–38 times greater than atmospheric inputs, and may be crucial in supporting primary production and nitrogen fixation in BB and beyond.
    Description: This work was supported by the Natural Sciences and Engineering Research Council of Canada (Grant NSERC-CCAR), the Northern Scientific Training Program, and by the University of British Columbia through a Four Year Fellowship to B. Rogalla.
    Description: 2022-03-20
    Keywords: Iron distributions ; Sediment resuspension ; Iron export ; Trace metal biogeochemistry ; Canadian Arctic Ocean ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...