ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Manganese  (2)
  • Mixing
  • Ocean
  • American Geophysical Union  (3)
  • MDPI Publishing
  • 2020-2023  (3)
  • 2021  (3)
  • 1
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(9), (2021): e2021PA004226, https://doi.org/10.1029/2021PA004226.
    Description: The deep ocean has long been recognized as the reservoir that stores the carbon dioxide (CO2) removed from the atmosphere during Pleistocene glacial periods. The removal of glacial atmospheric CO2 into the ocean is likely modulated by an increase in the degree of utilization of macronutrients at the sea surface and enhanced storage of respired CO2 in the deep ocean, known as enhanced efficiency of the biological pump. Enhanced biological pump efficiency during glacial periods is most easily documented in the deep ocean using proxies for oxygen concentrations, which are directly linked to respiratory CO2 levels. We document the enhanced storage of respired CO2 during the Last Glacial Maximum (LGM) in the Pacific Southern Ocean and deepest Equatorial Pacific using records of deglacial authigenic manganese, which form as relict peaks during increases in bottom water oxygen (BWO) concentration. These peaks are found at depths and regions where other oxygenation histories have been ambiguous, due to diagenetic alteration of authigenic uranium, another proxy for BWO. Our results require that the entirety of the abyssal Pacific below approximately 1,000 m was enriched in respired CO2 and depleted in oxygen during the LGM. The presence of authigenic Mn enrichment in the deep Equatorial Pacific for each of the last five deglaciations suggests that the storage of respired CO2 in the deep ocean is a ubiquitous feature of late-Pleistocene ice ages.
    Description: This work was performed with support from the National Science Foundation (NSF) over about 30 years. The TT013 and NBP9802 cores were collected during the U.S. JGOFS program. Their collection and analyses were supported by NSF OCE-9022301 and OPP-95303398 to R. F. Anderson, and NSF OCE 9301097 to R. W. Murray. Coring and radiocarbon analyses on NBP1702 were funded by NSF OPP-1542962. XRF analysis on NBP9802 and NBP1702 cores, as well as additional radiocarbon measurements, was funded by an LDEO Climate Center Grant to F. J. Pavia.
    Description: 2022-02-17
    Keywords: Manganese ; Southern Ocean ; Pacific Ocean ; Respired carbon ; Bottom water oxygen ; Deglaciations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(5), (2021): e2020GB006706, https://doi.org/10.1029/2020GB006706.
    Description: The Southern Ocean plays a critical role in regulating global uptake of atmospheric CO2. Trace elements like iron (Fe), cobalt (Co), and manganese (Mn) have been shown to modulate this primary productivity. Despite limited data, the vertical profiles for Mn, Fe, and Co in the Ross Sea show no evidence of scavenging, as typically observed in oceanic sites. This was previously attributed to low-particle abundance and/or by mixing rates exceeding scavenging rates. Scavenging of some trace metals such as cobalt (Co) is thought to be largely governed by Mn (oxyhydr)oxides, assumed to be the main component of particulate Mn (pMn). However, our data show that pMn has an average oxidation state below 3 and with nondetectable Mn oxides. In addition, soluble Co profiles show no evidence of scavenging and Co uptake measurements show little Co uptake in the euphotic zone and low/no scavenging at depth. Instead, high concentrations of dissolved Mn (dMn, up to 90 nM), which is primarily complexed as Mn(III)-L (up to 100%), are observed. Average dMn concentrations (10 ± 14 nM) are highest in bottom and surface waters. Manganese sources may include sediments and sea-ice melt, as elevated dMn was measured in sea ice (12 nM) compared to its surrounding waters (3 nM), and sea ice dMn was 97% Mn(III)-L. We contend that the lack of Co scavenging in the Ross Sea is due to a unique Mn redox cycle that favors the stabilization of Mn(III)-complexes at the expense of Mn oxide particle formation.
    Description: The authors acknowledge support from the NSF 1643684 (MS), NSF 1644073 (GRD), NSF OCE-1355720 (CMH), and the Woods Hole Oceanographic Institution Post-Doctoral Scholarship (VEO). The Stanford Synchrotron Radiation Lightsource was utilized in this study. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.
    Description: 2021-10-30
    Keywords: Cobalt ; Manganese ; Redox ; Ross sea ; Scavenging ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-21
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Warner, J. C., Geyer, W. R., Ralston, D. K., & Kalra, T. Using tracer variance decay to quantify variability of salinity mixing in the Hudson River Estuary. Journal of Geophysical Research: Oceans, 125(12), (2020): e2020JC016096, https://doi.org/10.1029/2020JC016096.
    Description: The salinity structure in an estuary is controlled by time‐dependent mixing processes. However, the locations and temporal variability of where significant mixing occurs is not well‐understood. Here we utilize a tracer variance approach to demonstrate the spatial and temporal structure of salinity mixing in the Hudson River Estuary. We run a 4‐month hydrodynamic simulation of the tides, currents, and salinity that captures the spring‐neap tidal variability as well as wind‐driven and freshwater flow events. On a spring‐neap time scale, salinity variance dissipation (mixing) occurs predominantly during the transition from neap to spring tides. On a tidal time scale, 60% of the salinity variance dissipation occurs during ebb tides and 40% during flood tides. Spatially, mixing during ebbs occurs primarily where lateral bottom salinity fronts intersect the bed at the transition from the main channel to adjacent shoals. During ebbs, these lateral fronts form seaward of constrictions located at multiple locations along the estuary. During floods, mixing is generated by a shear layer elevated in the water column at the top of the mixed bottom boundary layer, where variations in the along channel density gradients locally enhance the baroclinic pressure gradient leading to stronger vertical shear and more mixing. For both ebb and flood, the mixing occurs at the location of overlap of strong vertical stratification and eddy diffusivity, not at the maximum of either of those quantities. This understanding lends a new insight to the spatial and time dependence of the estuarine salinity structure.
    Description: This study was funded through the Coastal Model Applications and Field Measurements Project and the Cross‐shore and Inlets Project, US Geological Survey Coastal Marine Hazards and Resources Program. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.
    Keywords: Hudson River Estuary ; Mixing ; Numerical modeling ; Tracer variance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...