ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Climate change  (3)
  • American Geophysical Union  (3)
  • Copernicus
  • 2020-2023  (3)
  • 2015-2019
  • 2000-2004
  • 1950-1954
  • 1935-1939
  • 2021  (3)
Collection
Publisher
Years
  • 2020-2023  (3)
  • 2015-2019
  • 2000-2004
  • 1950-1954
  • 1935-1939
Year
  • 1
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(1), (2021): e2019JG005621, https://doi.org/10.1029/2019JG005621.
    Description: Ongoing ocean warming can release methane (CH4) currently stored in ocean sediments as free gas and gas hydrates. Once dissolved in ocean waters, this CH4 can be oxidized to carbon dioxide (CO2). While it has been hypothesized that the CO2 produced from aerobic CH4 oxidation could enhance ocean acidification, a previous study conducted in Hudson Canyon shows that CH4 oxidation has a small short‐term influence on ocean pH and dissolved inorganic radiocarbon. Here we expand upon that investigation to assess the impact of widespread CH4 seepage on CO2 chemistry and possible accumulation of this carbon injection along 234 km of the U.S. Mid‐Atlantic Bight. Consistent with the estimates from Hudson Canyon, we demonstrate that a small fraction of ancient CH4‐derived carbon is being assimilated into the dissolved inorganic radiocarbon (mean fraction of 0.5 ± 0.4%). The areas with the highest fractions of ancient carbon coincide with elevated CH4 concentration and active gas seepage. This suggests that aerobic CH4 oxidation has a greater influence on the dissolved inorganic pool in areas where CH4 concentrations are locally elevated, instead of displaying a cumulative effect downcurrent from widespread groupings of CH4 seeps. A first‐order approximation of the input rate of ancient‐derived dissolved inorganic carbon (DIC) into the waters overlying the northern U.S. Mid‐Atlantic Bight further suggests that oxidation of ancient CH4‐derived carbon is not negligible on the global scale and could contribute to deepwater acidification over longer time scales.
    Description: This study was sponsored by U.S. Department of Energy (DE‐FE0028980, awarded to J. D. K; DE‐FE0026195 interagency agreement with C. D. R.). We thank the crew of the R/V Hugh R. Sharp for their support, G. Hatcher, J. Borden, and M. Martini of the USGS for assistance with the LADCP, and Zach Bunnell, Lillian Henderson, and Allison Laubach for additional support at sea.
    Description: 2021-06-23
    Keywords: Radiocarbon ; Methane ; DIC ; Ocean acidification ; Climate change ; U.S Mid-Atlantic Bight
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(7), (2021): e2020PA004088, https://doi.org/10.1029/2020PA004088.
    Description: We reconstruct deep water-mass salinities and spatial distributions in the western North Atlantic during the Last Glacial Maximum (LGM, 19–26 ka), a period when atmospheric CO2 was significantly lower than it is today. A reversal in the LGM Atlantic meridional bottom water salinity gradient has been hypothesized for several LGM water-mass reconstructions. Such a reversal has the potential to influence climate, ocean circulation, and atmospheric CO2 by increasing the thermal energy and carbon storage capacity of the deep ocean. To test this hypothesis, we reconstructed LGM bottom water salinity based on sedimentary porewater chloride profiles in a north-south transect of piston cores collected from the deep western North Atlantic. LGM bottom water salinity in the deep western North Atlantic determined by the density-based method is 3.41–3.99 ± 0.15% higher than modern values at these sites. This increase is consistent with: (a) the 3.6% global average salinity change expected from eustatic sea level rise, (b) a northward expansion of southern sourced deep water, (c) shoaling of northern sourced deep water, and (d) a reversal of the Atlantic's north-south deep water salinity gradient during the LGM.
    Description: This work was supported by the US National Science Foundation (grant numbers 1433150 and 1537485).
    Description: 2021-10-24
    Keywords: Carbon cycle ; Climate change ; Deep water ; Glaciation ; Meridional overturning circulation ; Paleosalinity ; Porewater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 57(7), (2021): e2020WR028727, https://doi.org/10.1029/2020WR028727.
    Description: Numerous wetlands in the prairies of Canada provide important ecosystem services, yet are threatened by climate and land-use changes. Understanding the impacts of climate change on prairie wetlands is critical to effective conservation planning. In this study, we construct a wetland model with surface water balance and ecoregions to project future distribution of wetlands. The climatic conditions downscaled from the Weather Research and Forecasting model were used to drive the Noah-MP land surface model to obtain surface water balance. The climate change perturbation is derived from an ensemble of general circulation models using the pseudo global warming method, under the RCP8.5 emission scenario by the end of 21st century. The results show that climate change impacts on wetland extent are spatiotemporally heterogenous. Future wetter climate in the western Prairies will favor increased wetland abundance in both spring and summer. In the eastern Prairies, particularly in the mixed grassland and mid-boreal upland, wetland areas will increase in spring but experience enhanced declines in summer due to strong evapotranspiration. When these effects of climate change are considered in light of historical drainage, they suggest a need for diverse conservation and restoration strategies. For the mixed grassland in the western Canadian Prairies, wetland restoration will be favorable, while the highly drained eastern Prairies will be challenged by the intensified hydrological cycle. The outcomes of this study will be useful to conservation agencies to ensure that current investments will continue to provide good conservation returns in the future.
    Description: Z. Zhang was funded by a Mitacs Accelerate Fellowship funded by Ducks Unlimited Canada's Institute for Wetland and Waterfowl Research. Z. Zhang, Z. Li, and Y. Li acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, and Global Water Futures Program, Canada First Research Excellence Fund. This project was supported by grants from Wildlife Habitat Canada, Bass Pro Shops Cabela’s Outdoor Fund, and the Alberta NAWMP Partnership.
    Description: 2021-12-21
    Keywords: Wetland ; Hydrology ; Climate change ; Prairie Pothole Region ; Waterfowl ; Conservation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...