ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05.04. Instrumentation and techniques of general interest  (10)
  • 04.06. Seismology  (9)
  • 05.06. Methods  (1)
  • 1743 earthquake
  • Calabrian-Sicilian Earthquakes
  • Textbook of informatics
  • Elsevier B.V.  (7)
  • American Society of Civil Engineers  (1)
  • Copernicus  (1)
  • Istituto Nazionale di Geofisica e Vulcanologia  (1)
  • Taylor & Francis
  • Wiley
  • 2020-2022  (11)
  • 2005-2009
  • 1995-1999
  • 1975-1979
  • 2021  (11)
Collection
Keywords
Publisher
Years
  • 2020-2022  (11)
  • 2005-2009
  • 1995-1999
  • 1975-1979
  • 2020-2023  (2)
Year
  • 1
    facet.materialart.
    Unknown
    Elsevier B.V.
    Publication Date: 2021-02-01
    Description: In supervised classification, we search criteria allowing us to decide whether a sample belongs to a certain class of patterns. The identification of such decision functions is based on examples where we know a priori to which class they belong. The distinction of seismic signals, produced from earthquakes and nuclear explosions, is a classical problem of discrimination using classification with supervision. We move on from observed data—signals originating from known earthquakes and nuclear tests—and search for criteria on how to assign a class to a signal of unknown origin. We begin with Principal Component Analysis (PCA) and Fisher's Linear Discriminant Analysis (FLDA), identifying a linear element separating groups at best. PCA, FLDA, and likelihood-based approaches make use of statistical properties of the groups. Considering only the number of misclassified samples as a cost, we may prefer alternatives, such as the Multilayer Perceptrons (MLPs). The Support Vector Machines (SVMs) use a modified cost function, combining the criterion of the minimum number of misclassified samples with a request of separating the hulls of the groups with a margin as wide as possible. Both SVMs and MLPs overcome the limits of linear discrimination. A famous example for the advantages of the two techniques is the eXclusive OR (XOR) problem, where we wish to form classes of objects having the same parity—even, e.g., (0,0), (1,1) or odd, e.g., (0,1), (1,0). MLPs and SVMs offer effective methods for the identification of nonlinear decision functions, allowing us to resolve classification problems of any complexity provided the data set used during earning is sufficiently large. In Hidden Markov Models (HMMs), we consider observations where their meaning depends on their context. Observations form a causal chain generated by a hidden process. In Bayesian Networks (BNs) we represent conditional (in)dependencies between a set of random variables by a graphical model. In both HMMs and BNs, we aim at identifying models and parameters that explain observations with a highest possible degree of probability.
    Description: Published
    Description: 33-85
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; supervised learning ; Support Vector Machines ; Multilayer Perceptrons ; Hidden Markov Models ; Bayesian Networks ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-01
    Description: Patterns and objects are described by a variety of characteristics, namely features and feature vectors. Features can be numerical, ordinal, and categorical. Patterns can be made up of a number of objects, such as in speech processing. In geophysics, numerical features are the most common ones and we focus on those. The choice of appropriate features requires a priori reasoning about the physical relation between patterns and features. We present strategies for feature identification and procedures suitable for pattern recognition. In time series analysis and image processing, the direct use of raw data is not feasible. Procedures of feature extraction, based on locally encountered characteristics of the data, are applied. Here we present the problem of delineating segments of interest in time series and textures in image processing. In transformations, we “translate” our raw data to a form suitable for learning. In Principal Component Analysis, we rotate the original features to a system of uncorrelated variables, limiting redundancy. Independent Component Analysis follows a similar strategy, transforming our data into variables independent of each other. Fourier transform and wavelet transform are based on the representation of the original data as a series of basis functions—sines and cosines or finite-length wavelets. Redundancy reduction is achieved considering the contributions of the single basis functions. Even though a large number of features help to solve a classification problem, feature vectors with high dimensions pose severe problems. Besides the computational burden, we encounter problems known under the term “curse of dimensionality.” The curse of dimensionality entails the necessity of feature selection and reduction, which includes a priori considerations as well as redundancy reduction. The significance of features may be evaluated with tests, such as Student’s t or Hotelling's T2, and, in more complex problems, with cross-validation methods.
    Description: Published
    Description: 3-13
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; objects ; features ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-19
    Description: The dynamic cone penetration test (DPT) developed in China has been correlated with liquefaction resistance of gravelly soils based on field performance data from theMw7.9Wenchuan earthquake.With a diameter of 74 mm, DPT would be less sensitive to gravel size particles than the SPT or CPT and could be a viable assessment tool depending on gravel size and percentage. In this study, liquefaction resistance is evaluated using four DPT soundings with two hammer energies and shear wave velocity (VS) measurements in Avasinis, Italy, where gravelly sand liquefied in the 1976 Friuli, Italy, earthquake. The DPT correctly predicted liquefaction at three sites where liquefaction was observed; however, it also predicted liquefaction in a highly stratified silt and silty gravel profile where ejecta was not observed. This failure appears to be a result of the “system response” of the profile, which impeded ejecta as identified at similar stratified sites in New Zealand. VS1-based triggering curves often predicted no liquefaction at sites where liquefaction was observed, suggesting that the boundary curves may need to shift to the right for gravelly soils. Standard SPT energy corrections were found to be reasonable for the DPT.
    Description: Published
    Description: 4020038
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Gravel liquefaction ; Dynamic cone penetrometer (DPT) ; Shear wave velocity ; Liquefaction system response ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-12
    Description: This research was inspired by an old stereoscopic viewer from the early 1900s, containing 42 glass slides depicting scenes from two Italian earthquakes that struck Southern Calabria and Eastern Sicily in the years 1894 and 1905, causing hundreds of deaths, but whose memory was blurred by the subsequent, great earthquake of the Messina Straits of December 28, 1908. The sequence of three-dimensional images shown by the viewer gave a deep and realistic visual impact to scenes of collapses, debris, and victims, arousing feelings of dismay. In this work, we describe the viewer apparatus; the places depicted in the stereoscopic plates, and the seismic phenomena that caused the disasters. But above all, we investigate the social and cultural aims that pushed to show the effects of local earthquakes through this kind of primitive multimedia mechanism. We exclude that the viewer, with its photographic equipment, was merely an instrument of entertainment. We rather assume that it carried out an educational task. The repetition of the sequence of tragic images of earthquakes through the stereoscopic viewer had the purpose of contributing to give awareness of the looming seismic risk and to accept rationally those recurring disasters.
    Description: Published
    Description: Se104
    Description: 4T. Sismicità dell'Italia
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: 1TM. Formazione
    Description: 2TM. Divulgazione Scientifica
    Description: JCR Journal
    Keywords: Stereoscopic Viewer ; Calabrian-Sicilian Earthquakes ; Observational Seismology ; Seismic-Risk ; Geo-Education ; Geoethics ; 04.06. Seismology ; 05.03. Educational, History of Science, Public Issues ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-14
    Description: Southwestern Sicily is an area of infrequent seismic activity; however, some studies carried out in the archaeological Selinunte site suggest that, between the fourth century BC and the early Middle Ages, probably at least two earthquakes strucked this area with enough energy to damage and cause the collapse and kinematics of much of the architecture of Selinunte. Take into account that, in 2008, a noninvasive archaeological prospection and traditional data gathering methods along the Acropolis north fortifications were carried out. Following these first studies, after about 10 years, a new geophysical campaign was carried out. This second campaign benefited from the application of modern technologies for the acquisition and processing of the point cloud data on the northern part of the Acropolis, like terrestrial laser scanning and unmanned aerial vehicle photogrammetry. In this paper, we present the application of these techniques and a strategy for their integration for the 3D modelling of buildings and cultural heritages. We show how the integration of data acquired independently by these two techniques is an added value able to overcome the intrinsic limits of the individual techniques. The application to Selinunte's Acropolis allowed it to highlight and measure with high accuracy fractures, dislocation, inclinations of walls, depressions of some areas and other interesting observations, which may be important starting points for future investigations.
    Description: Published
    Description: 153-165
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: 3D reconstruction ; archaeological survey ; digital elevation model ; Selinunte Archaeological Park ; terrestrial laser scanning ; unmanned aerial vehicle photogrammetry ; 05.04. Instrumentation and techniques of general interest ; 04.02. Exploration geophysics ; 05.02. Data dissemination ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-01
    Description: In this chapter, we deal with a posterior analysis of supervised and unsupervised learning techniques. Concerning supervised learning, we discuss methods of cross-validation and assessment of uncertainty of tests by means of the “Receiver Operation Curve” and the “Kappa-Statistics.” We show the importance of appropriate target information. Furthermore, features are critical; when they are not properly chosen, they fail to describe objects in a unique way. A critical attitude is mandatory to validate the success of an application. A high score of success does not automatically mean that a method is truly effective. At the same time, users should not despair when the desired success is not achieved. A posteriori analysis on the reasons for an apparent failure may provide useful insights into the problem. Targets may not be appropriately defined, features can be inadequate, etc. Problems can be often fixed by adjusting a few choices; sometimes a change of strategy may be necessary to improve results. In unsupervised learning, we ask whether the structures revealed in the data are meaningful. Cluster analysis offers rules giving formal answers to this question; however, such rules are not generally applicable. In some cases, a heuristic approach may be necessary.
    Description: Published
    Description: 237-259
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; a posteriori analysis ; supervised learning ; unsupervised learning ; cross validation ; assessment of uncertainty ; Receiver Operation Curve ; Kappa-Statistics ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier B.V.
    Publication Date: 2021-02-01
    Description: Unsupervised learning is based on the definition of an appropriate metrics defining the similarity of patterns. On the basis of the metrics, we form groups or clusters of patterns following various strategies. In partitioning cluster analysis, we form disjoint clusters. Being faced with data, where clusters still exhibit heterogeneities or subclusters, we may adopt the strategy of hierarchical clustering, which leads to the generation of the so-called dendrograms. In the partitioning strategy, we choose a priori the number of clusters we wish to form, whereas in the hierarchical strategy, the number of clusters depends on the resolution we want to have. Density-based clustering considers local structures of a data set. We consider a unit volume in our data space and derive the density of samples within this volume. Moving toward neighboring volumes, we verify whether the number of samples has dropped below a threshold. If this is the case, we identify a heterogeneity, otherwise we join the neighboring volumes to a common cluster. Self-Organizing Maps (SOMs) provide a way of representing multidimensional data in much lower dimensional spaces than the original data set. The process of reducing the dimensionality of vectors is essentially a data compression technique known as vector quantization. The SOM technique creates a network that stores information in a way that it maintains the topological relationships within the patterns of the data set. Each node of the network represents a number of patterns. Assigning a color code to the nodes, the representation of pattern characteristics with high-dimensional feature vectors becomes extremely effective.
    Description: Published
    Description: 87-124
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; unsupervised learning ; cluster analysis ; Density-based clustering ; Self-Organizing Maps ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-01
    Description: This chapter demonstrates how Unsupervised Learning can be applied in Geophysics. It starts with an example of clustering seismic spectra obtained on Stromboli volcano. K-means clustering as well as clustering using the Adaptive Criterion are applied. The latter criterion is preferred as it better matches the statistical characteristics of the data. Clusters show close relation to the state of volcanic activity. Density based clustering reveals groups whose hulls can be of irregular shape. This makes the method attractive, among others, for the identification of structural elements in geology, which often do not have a simple geometry. An example application is discussed considering the distribution of earthquake locations on Mt Etna, which clearly evidence structures already identified by other, independent evidences. Using SOM we aim at data reduction and effective graphical visualization. In an example for climate data we demonstrate the application of SOM for zoning purposes. Besides, the temporal evolution of spectral seismic data recorded on Mt Etna can be effectively monitored using SOM. We further illustrate the use of SOM for directional data, which can be handled best using a toroidal sheet geometry. We discuss this using a data set of seismic moment tensors of Mediterranean earthquakes.
    Description: Published
    Description: 189-234
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; unsupervised learning ; Density based clustering ; Stromboli ; earthquakes ; volcanic activity ; structural data ; seismic moment tensors ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier B.V.
    Publication Date: 2021-02-01
    Description: In this chapter, we present scripts and programs that accompany this book. Five MATLAB scripts regard simple examples related to supervised learning, that is, linear discrimination, the perceptron, support vector machines, and hidden Markov models. Seven scripts are devoted to unsupervised learning, such as K-means and fuzzy clustering, agglomerative clustering, density-based clustering, and clustering of patterns where features are correlated. These scripts provide a starting point for the reader, who can adjust and modify the codes with respect to proper needs. Besides, we provide sources and executables of programs that can be readily applied to larger and more complex datasets. These programs regard supervised learning using multilayerperceptron and support vector machines. KKAnalysis is a toolbox for unsupervised learning and offers various options of clustering and the use of self-organizing maps. The programs offer graphical user interfaces (GUI) to facilitate their use and create both graphical and alphanumeric output that can be used in further processing steps. The programs come along with real-world datasets that are also discussed in the example applications presented in various chapters of the book. Other propaedeutic material can be found in a folder called “miscellaneous.”
    Description: Published
    Description: 261-313
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; software manuals ; MATLAB scripts ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-15
    Description: This chapter presents applications of supervised learning in various geophysical disciplines, being them seismology, geodesy, magnetism, and others. For all examples, we provide a brief introduction to the geophysical background. Practical aspects, such as normalization issues and feature selection, are discussed. A posteriori considerations shed light on the geophysical problem, such as the importance of model parameters in regression, the possible nonuniqueness in inversion, and flaws in the definition of targets. We demonstrate multilayer perceptrons (MLPs) as classifiers of seismic waveforms. Besides, we show how the use of MLP is straightforward in the context of inversion of various kinds of data, for example, seismic, geodetic, and magnetic. Regression with MLP is applied to magnetotelluric and seismic data. Multiclass classification with support vector machine (SVM) is discussed for infrasound waveforms and volcanic rocks using geochemical characteristics. We introduce the use of SVM in the context of regression, which is formally less immediate than for MLP, but yields good results. An example deals with empirical ground motion estimation during earthquakes. In hidden Markov models and Bayesian networks one considers the interrelation between observations rather than single patterns. We show their benefits in various applications, from seismic waveform classification aimed at the forecast of volcanic unrest up to their use in tsunami early-warning systems.
    Description: Published
    Description: 127-187
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: pattern recognition ; supervised learning ; multilayer perceptrons ; seismic data ; magnetotelluric data ; infrasound waveforms ; volcanic rocks ; geochemical characteristics ; 04.04. Geology ; 04.06. Seismology ; 04.07. Tectonophysics ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-06-07
    Description: The diagnosis of the conservation state of monumental structures from constraints to the spatial distribution of their physical properties on shallow and inner materials represents one of the key objectives in the application of non-invasive techniques. In situ, CRP and 3D ultrasonic tomography can provide an effective coverage of stone materials in space and time. The intrinsic characteristics of the materials that make up a monumental structure and affect the two properties (i.e., reflectivity, longitudinal velocity) through the above methods substantially differ. Consequently, the content of their information is mainly complementary rather than redundant. In this study we present the integrated application of different non-destructive techniques i.e., Close Range Photogrammetry (CRP), and low frequency (24 KHz) ultrasonic tomography complemented by petrographycal analysis based essentially on Optical Microscopy (OM). This integrated methodology has been applied to a Carrara marble column of the Basilica of San Saturnino, in Byzantine-Proto-Romanesque style, which is part of the Paleo Christian complex of the V-VI century. This complex also includes the adjacent Christian necropolis in the square of San Cosimo in the city of Cagliari, Sardinia, Italy. The column under study is made of bare material dating back probably to the first century A.D., it was subjected to various traumas due to disassembly and transport to the site, including damage caused by the close blast of a WWII fragmentation bomb. High resolution 3D modelling of the studied artifact was computed starting from the integration of proximal sensing techniques such as CRP based on Structure from Motion (SfM), with which information about the geometrical anomalies and reflectivity of the investigated marble column surface was obtained. On the other hand, the inner parts of the studied body were successfully inspected in a non-invasive way by computing the velocity pattern of the ultrasonic signal through the investigated materials using 3D ultrasonic tomography. This technique gives information on the elastic properties of the material related with mechanical properties and a number of factors, such as presence of fractures, voids, and flaws. Extracting information on such factors from the elastic wave velocity using 3D tomography provides a non-invasive approach to analyse the property changes of the inner material of the ancient column. The integrated application of in situ CRP and ultrasonic techniques provides a full 3D high resolution model of the investigated artifact. This model enhanced by the knowledge of the petrographic characteristics of the materials, improves the diagnostic process and affords reliable information on the state of conservation of the materials used in the construction processes of the studied monumental structure. The integrated use of the non-destructive techniques described above also provides suitable data for a possible restoration and future preservation.
    Description: Copernicus
    Description: Published
    Description: On line
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: Cultural Heritage ; Monumental Structures ; Non-Destructive Testing ; Close Range Photogrammetry ; 3D Ultrasonic Tomography ; High resolution 3D modelling ; Restoration ; Conservation ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...