ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Instability
  • American Geophysical Union  (2)
  • American Meteorological Society  (1)
  • American Institute of Physics
  • Blackwell Publishing Ltd
  • Cambridge University Press
  • Cell Press
  • Institute of Physics
  • Nature Publishing Group
  • Springer Science + Business Media
  • 2020-2023  (3)
  • 2020-2022
  • 1975-1979
  • 1960-1964
  • 2021  (3)
  • 2021  (3)
Collection
Publisher
  • American Geophysical Union  (2)
  • American Meteorological Society  (1)
  • American Institute of Physics
  • Blackwell Publishing Ltd
  • Cambridge University Press
  • +
Years
  • 2020-2023  (3)
  • 2020-2022
  • 1975-1979
  • 1960-1964
Year
  • 1
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Whitehead, J. A. Fluid flow with three upstream configurations in freezing tubes. Journal of Geophysical Research: Earth Surface, 126(6), (2021): e2020JF005969, https://doi.org/10.1029/2020JF005969.
    Description: The accumulation of frozen liquid around a central passageway of melt as it flows through a freezing region can make calculations very challenging. To both illustrate and to quantify some of these challenges from freezing, a model equation is developed. It simplifies the solution of Holmes (2007, https://gfd.whoi.edu/wp-content/uploads/sites/18/2018/03/MHolmesGFDReport_30151.pdf) for low Reynolds number single component liquid flow through a long tube that has a wall kept at subfreezing temperature. This model equation is used in conjunction with three different upstream configurations, each with parameters expressing their behavior. Analytical and numerical results give the parameters that have criteria for: the freezing of a compressible upstream reservoir that includes oscillatory behavior; the freezing of flow fed through a constriction with a large upstream pressure, just like a dripping water faucet during winter; the evolution of flow in multiple tubes connected by an upstream manifold, where some tubes end up with full flow and others freeze shut. Numerical runs with 1,000 tubes give a formula for the spacing between actively flowing (non-frozen) tubes over wide ranges of the two upstream parameters (flow rate and manifold resistance). Results have implications in various areas in earth science. Some are: oscillatory and freezing shut criteria for flow of magma from a compressible region, a criterion for wintertime ice accumulation at natural springs, and the spacing between volcanos.
    Description: Emeritus funds are provided by Woods Hole Oceanographic Institution.
    Keywords: Freezing ; Compressible ; Instability ; Oscillation ; Focusing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11), (2020): 3235–3251, https://doi.org/10.1175/JPO-D-20-0095.1.
    Description: The dense outflow through Denmark Strait is the largest contributor to the lower limb of the Atlantic meridional overturning circulation, yet a description of the full velocity field across the strait remains incomplete. Here we analyze a set of 22 shipboard hydrographic–velocity sections occupied along the Látrabjarg transect at the Denmark Strait sill, obtained over the time period 1993–2018. The sections provide the first complete view of the kinematic components at the sill: the shelfbreak East Greenland Current (EGC), the combined flow of the separated EGC, and the North Icelandic Jet (NIJ), and the northward-flowing North Icelandic Irminger Current (NIIC). The total mean transport of overflow water is 3.54 ± 0.29 Sv (1 Sv ≡ 106 m3 s−1), comparable to previous estimates. The dense overflow is partitioned in terms of water mass constituents and flow components. The mean transports of the two types of overflow water—Atlantic-origin Overflow Water and Arctic-origin Overflow Water—are comparable in Denmark Strait, while the merged NIJ–separated EGC transports 55% more water than the shelfbreak EGC. A significant degree of water mass exchange takes place between the branches as they converge in Denmark Strait. There are two dominant time-varying configurations of the flow that are characterized as a cyclonic state and a noncyclonic state. These appear to be wind-driven. A potential vorticity analysis indicates that the flow through Denmark Strait is subject to symmetric instability. This occurs at the top of the overflow layer, implying that the mixing/entrainment process that modifies the overflow water begins at the sill.
    Description: Funding for the study was provided by National Science Foundation (NSF) Grants OCE-1259618, OCE-1756361, and OCE-1558742. The German research cruises were financially supported through various EU Projects (e.g. THOR, NACLIM) and national projects (most recently TRR 181 “Energy Transfer in Atmosphere and Ocean” funded by the German Research Foundation and RACE II “Regional Atlantic Circulation and Global Change” funded by the German Federal Ministry for Education and Research). GWKM acknowledges the support of the Natural Sciences and Engineering Research Council of Canada. LP was supported by NSF Grant OCE-1657870.
    Keywords: Currents ; Instability ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Evans, D. G., Frajka-Williams, E., Garabato, A. C. N., Polzin, K. L., & Forryan, A. Mesoscale eddy dissipation by a "zoo" of submesoscale processes at a western boundary. Journal of Geophysical Research: Oceans, 125(11), (2020): e2020JC016246, doi:10.1029/2020JC016246.
    Description: Mesoscale eddies are ubiquitous dynamical features that tend to propagate westward and disappear along ocean western boundaries. Using a multiscale observational study, we assess the extent to which eddies dissipate via a direct cascade of energy at a western boundary. We analyze data from a ship‐based microstructure and velocity survey, and an 18‐month mooring deployment, to document the dissipation of energy in anticyclonic and cyclonic eddies impinging on the topographic slope east of the Bahamas, in the North Atlantic Ocean. These observations reveal high levels of turbulence where the steep and rough topographic slope modified the intensified northward flow associated with, in particular, anticyclonic eddies. Elevated dissipation was observed both near‐bottom and at mid depths (200–800 m). Near‐bottom turbulence occurred in the lee of a protruding escarpment, where elevated Froude numbers suggest hydraulic control. Energy was also radiated in the form of upward‐propagating internal waves. Elevated dissipation at mid depths occurred in regions of strong vertical shear, where the topographic slope modified the vertical structure of the northward eddy flow. Here, low Richardson numbers and a local change in the isopycnal gradient of potential vorticity (PV) suggest that the elevated dissipation was associated with horizontal shear instability. Elevated mid‐depth dissipation was also induced by topographic steering of the flow. This led to large anticyclonic vorticity and negative PV adjacent to the topographic slope, suggesting that centrifugal instability underpinned the local enhancement in dissipation. Our results provide a mechanistic benchmark for the realistic representation of eddy dissipation in ocean models.
    Description: The MeRMEED project, DGE, EFW, ACNG and AF were funded under Natural Environment Research Council standard grant NE/N001745/2. ACNG further acknowledges the support of the Royal Society and the Wolfson Foundation.
    Keywords: Direct energy cascade ; Eddy-topography interactions ; Energy ; Instability ; Mesoscale eddies ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...