ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (29)
  • Springer  (29)
  • American Meteorological Society
  • Springer Nature
  • 2020-2024  (29)
  • 2020  (29)
  • 1
    Publication Date: 2023-02-08
    Description: We explore the predictability of tropical Atlantic sea surface temperature (SST) and the potential influence of climate model bias on SST predictions over the tropical Atlantic. Two statistical methods are used to examine the skill in forecasting tropical Atlantic SST anomalies (SSTAs): linear inverse modeling (LIM) and analogue forecast (AF). The statistical models are trained either with observations or with data from two control integrations of the Kiel Climate Model (KCM), which only differ with respect to the resolution of its atmospheric component. Observed SSTAs suggest that Tropical Atlantic climatic changes are potentially predictable at lead times of up to 6 months over large parts of the Tropical Atlantic. The SSTAs from the KCM version employing a high-resolution atmosphere model (KCM-HRES) is potentially predictable at a level comparable to that derived from the observations, whereas the SSTAs from the KCM version employing a low-resolution atmosphere model (KCM-LRES) is considerably less potentially predictable. We show that the enhanced potential predictability in the former KCM version can be very likely related to the improved representation of ENSO-like dynamics and its seasonality. We used the statistical models in true forecast mode, i.e. the prediction schemes were trained from data independent of the forecast period. Using observed SSTAs to train the LIM yields significant skill in forecasting observed SSTAs at lead times of up to 4 months across all calendar months, which is mostly restricted to the northern and equatorial western Tropical Atlantic. Similar patterns, but with lower skill, are found when the models’ SSTAs are used, in which LIM trained with the KCM-HRES generally yields higher skills than that from the KCM-LRES. Applying AF yields significant skills in predicting observed SSTAs over the same regions, but the forecast skills are considerably smaller. When the SSTAs together with either sea level pressure (SLP) anomalies or dynamic sea level (DSL) anomalies from the KCM are used to construct the statistical models, the prediction of observed equatorial Atlantic SSTAs can be improved, with significant skill enhancement at lead times of up to 4 months in limited regions. An optimal initial SSTA pattern is found, which results in the largest transient anomaly growth over the entire domain. Independent of external forces, this amplification is developed internally; meaning that the seasonal forecast might be more sensitive to initial conditions than currently thought.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The 1888 Ritter Island volcanic sector collapse triggered a regionally damaging tsunami. Historic eyewitness accounts allow the reconstruction of the arrival time, phase and height of the tsunami wave at multiple locations around the coast of New Guinea and New Britain. 3D seismic interpretations and sedimentological analyses indicate that the catastrophic collapse of Ritter Island was preceded by a phase of deep-seated gradual spreading within the volcanic edifice and accompanied by a submarine explosive eruption, as the volcanic conduit was cut beneath sea level. However, the potential impact of the deep-seated deformation and the explosive eruption on tsunami genesis is unclear. For the first time, it is possible to parameterise the different components of the Ritter Island collapse with 3D seismic data, and thereby test their relative contributions to the tsunami. The modelled tsunami arrival times and heights are in good agreement with the historic eyewitness accounts. Our simulations reveal that the tsunami was primarily controlled by the displacement of the water column by the collapsing cone at the subaerial-submarine boundary and that the submerged fraction of the slide mass and its mobility had only a minor effect on tsunami genesis. This indicates that the total slide volume, when incorporating the deep-seated deforming mass, is not directly scalable for the resulting tsunami height. Furthermore, the simulations show that the tsunamigenic impact of the explosive eruption energy during the Ritter Island collapse was only minor. However, this relationship may be different for other volcanogenic tsunami events with smaller slide volumes or larger magnitude eruptions, and should not be neglected in tsunami simulations and hazard assessment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: The Hikurangi Margin off the east coast of the North Island (Te Ika-a-Māui) is a tectonically active subduction zone and the location of New Zealand’s largest gas hydrate province. Faults are internally complex volumetric zones that may play a significant role in the migration of fluids beneath the seafloor. The combined processes of deformation and fluid migration result in the formation of concentrated hydrate accumulations along accretionary ridges. It is not fully understood to what extent faults control fluid migration along the Hikurangi Margin, and whether deep-seated thrust faults provide a pathway for thermogenic gas to migrate up from sources at depth. Using 2D models based on seismic data from the region we investigated the role of thrust faults in facilitating fluid migration and contributing to the formation of concentrated gas hydrates. By altering permeability properties of the fault zones in these transient state models we can determine whether faults are required to act as fluid flow pathways. In this study we focus on two study sites offshore southern Wairarapa, using realistic yet simplified fault geometries derived from 2D seismic lines. The results of these models allow us to start to disentangle the complex relationship between fault zone structure, permeability, geometry, fluid migration and gas hydrate formation. Based on the model outputs we propose that faults act as primary pathways facilitating fluid migration and are critical in the formation of concentrated gas hydrate deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: We project changes of the Aleutian Low (AL) under global warming using ensemble simulations with a fully coupled ocean-atmosphere-sea ice model, the Kiel Climate Model (KCM). In the global warming simulations, the carbon dioxide (CO2) concentration increases by 1% per year from the preindustrial level of 286.2 ppm to a quadruple value in 140 years. Results from the 40 members of an ensemble simulation show an intensification of the AL such that ensemble mean North Pacific Index (NPI) is decreased by 2.71 hPa. It is also accompanied with an expansion of the AL to north. While the effect of weakened land-ocean thermal contrast and SST warming in the eastern tropical Pacific on the AL strength are relatively weak and marginally significant, sea ice loss in the marginal seas of the North Pacific, such as the Bering Sea and the Sea of Okhotsk, increases the surface air temperature and makes pressure lower over the Bering Sea and the Aleutian Islands. Especially, sea ice loss in the Okhotsk Sea drives the SLP change around the Aleutian Islands and contributes to the strengthening of the AL.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Shell formation and repair occurs under the control of mantle epithelial cells in bivalve molluscs. However, limited information is available on the precise acid–base regulatory machinery present within these cells, which are fundamental to calcification. Here, we isolate mantle epithelial cells from the Pacific oyster, Crassostrea gigas and utilise live cell imaging in combination with the fluorescent dye, BCECF-AM to study intracellular pH (pHi) regulation. To elucidate the involvement of various ion transport mechanisms, modified seawater solutions (low sodium, low bicarbonate) and specific inhibitors for acid–base proteins were used. Diminished pH recovery in the absence of Na+ and under inhibition of sodium/hydrogen exchangers (NHEs) implicate the involvement of a sodium dependent cellular proton extrusion mechanism. In addition, pH recovery was reduced under inhibition of carbonic anhydrases. These data provide the foundation for a better understanding of acid–base regulation underlying the physiology of calcification in bivalves.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Biodiversity is generally believed to be a main determinant of ecosystem functioning. This principle also applies to the microbiome and could consequently contribute to host health. According to ecological theory, communities are shaped by top predators whose direct and indirect interactions with community members cause stability and diversity. Bdellovibrio and like organisms (BALOs) are a neglected group of predatory bacteria that feed on Gram-negative bacteria and can thereby influence microbiome composition. We asked whether BALOs can predict biodiversity levels in microbiomes from distinct host groups and environments. We demonstrate that genetic signatures of BALOs are commonly found within the 16S rRNA reads from diverse host taxa. In many cases, their presence, abundance, and especially richness are positively correlated with overall microbiome diversity. Our findings suggest that BALOs can act as drivers of microbial alpha-diversity and should therefore be considered candidates for the restoration of microbiomes and the prevention of dysbiosis.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: High-resolution bathymetry collected with an autonomous underwater vehicle (AUV) along the flanks of three ridges of the accretionary prism offshore southwestern (SW) Taiwan revealed more than 650 elongated depressions in water depths ranging from 1155 to 1420 m. The depressions are between 12 and 129 m long, 5 to 70 m wide, and up 9 m deep at their center and shallowing downslope to about 1-m depth. Due to their shape in downslope cross section, they are termed comet-shaped depressions (CSD). The CSD occur in patches of more than 100 with densities of 53 to 98 CSD/km2. In addition, seven topographic mounds were mapped and interpreted as pingos, which remotely operate vehicle (ROV) observations and sampling show to be covered with authigenic carbonate. These features overlie areas where multichannel seismic reflection (MCS) profiles show bottom simulating reflectors (BSR) and dipping strata extending from below the BSR to near the seafloor. We consider comet-shaped depression, a new type of pockmark, forms on a sloping seafloor where fluids expulsion occurred. We also suggest that the two types of distinctive geomorphic features are attributed to fluid venting which occurs at different rates, with the mounds developing slowly over time, but the CSD forming in discrete events perhaps associated with large earthquakes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Kiloniella laminariae is a true marine bacterium and the first member of the family and order, the Kiloniellaceae and Kiloniellales. K. laminariae LD81T (= DSM 19542T) was isolated from the marine macroalga Saccharina latissima and is a mesophilic, typical marine chemoheterotrophic aerobic bacterium with antifungal activity. Phylogenetic analysis of 16S rRNA gene sequence revealed the similarity of K. laminariae LD81T not only with three validly described species of the genus Kiloniella, but also with undescribed isolates and clone sequences from marine samples in the range of 93.6–96.7%. We report on the analysis of the draft genome of this alphaproteobacterium and describe some selected features. The 4.4 Mb genome has a G + C content of 51.4%, contains 4213 coding sequences including 51 RNA genes as well as 4162 protein-coding genes, and is a part of the Genomic Encyclopaedia of Bacteria and Archaea (GEBA) project. The genome provides insights into a number of metabolic properties, such as carbon and sulfur metabolism, and indicates the potential for denitrification and the biosynthesis of secondary metabolites. Comparative genome analysis was performed with K. laminariae LD81T and the animal-associated species Kiloniella majae M56.1T from a spider crab, Kiloniella spongiae MEBiC09566T from a sponge as well as Kiloniella litopenai P1-1 from a white shrimp, which all inhabit quite different marine habitats. The analysis revealed that the K. laminariae LD81T contains 1397 unique genes, more than twice the amount of the other species. Unique among others is a mixed PKS/NRPS biosynthetic gene cluster with similarity to the biosynthetic gene cluster responsible for the production of syringomycin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Cold-water corals (CWC), dominantly Desmophyllum pertusum (previously Lophelia pertusa), and their mounds have been in the focus of marine research during the last two decades; however, little is known about the mound-forming capacity of other CWC species. Here, we present new 230Th/U age constraints of the relatively rarely studied framework-building CWC Solenosmilia variabilis from a mound structure off the Brazilian margin combined with computed tomography (CT) acquisition. Our results show that S. variabilis can also contribute to mound formation, but reveal coral-free intervals of hemipelagic sediment deposits, which is in contrast to most of the previously studied CWC mound structures. We demonstrate that S. variabilis only occurs in short episodes of 〈 4 kyr characterized by a coral content of up to 31 vol%. In particular, it is possible to identify distinct clusters of enhanced aggradation rates (AR) between 54 and 80 cm ka−1. The determined AR are close to the maximal growth rates of individual S. variabilis specimens, but are still up to one order of magnitude smaller than the AR of D. pertusum mounds. Periods of enhanced S. variabilis AR predominantly fall into glacial periods and glacial terminations that were characterized by a 60–90 m lower sea level. The formation of nearby D. pertusum mounds is also associated with the last glacial termination. We suggest that the short-term periods of coral growth and mound formation benefited from enhanced organic matter supply, either from the adjacent exposed shelf and coast and/or from enhanced sea-surface productivity. This organic matter became concentrated on a deeper water-mass boundary between South Atlantic Central Water and the Antarctic Intermediate Water and may have been distributed by a stronger hydrodynamic regime. Finally, periods of enhanced coral mound formation can also be linked to advection of nutrient-rich intermediate water masses that in turn might have (directly or indirectly) further facilitated coral growth and mound formation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...