ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers  (55)
  • Oxford University Press  (44)
  • American Geophysical Union
  • 2020-2024  (121)
  • 2020  (121)
  • 1
    Publication Date: 2024-06-07
    Description: The 2015 Paris Agreement aims to strengthen the global response to climate change, and to maintain an average global temperature well below 2 °C, with aspirations towards 1.5 °C, by means of balancing sources and sinks of greenhouse gas emissions. Following this, the importance of carbon dioxide removal in global emission pathways has been further emphasized, and Negative Emissions Technologies (NETs) that capture carbon from the atmosphere and remove it from the system have been put in the spotlight. NETs range from innovative, engineered technologies, to well-known approaches like afforestation/reforestation. These technologies essentially compensate for a shrinking carbon budget coupled with hard-to-abate future emissions, and a historical lack of action. However, none has been deployed at scales close to what is envisioned in emission pathways in line with the Paris Agreement goals. To understand the potential contribution of NETs to meet global emission goals, we need to better understand opportunities and constraints for deploying NETs on a national level. We examine 17 Long-Term Low Greenhouse Gas Emission Development Strategies (LT-LEDS), and discuss them in the context of available NETs feasibility assessments. Our mapping shows that most countries include NETs in their long-term strategies, and that enhancement of natural sinks is the most dominating type of NET in these strategies. In line with many feasibility assessments, LT-LEDS focus on technical and biophysical considerations, and neglect socio-cultural dimensions. We suggest that feasibility assessments at the national level need to be more holistic; context-specific and comprehensive in terms of aspects assessed.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-26
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved
    Description: The application of a physics-based earthquake simulator to Central Italy allowed the compilation of a synthetic seismic catalogue spanning 100 000 yr, containing more than 300 000 M ≥ 4.0 simulated earthquakes, without the limitations that real catalogues suffer in terms of completeness, homogeneity and time duration. The seismogenic model upon which we applied the simulator code was derived from version 3.2.1 of the Database of Individual Seismogenic Sources (DISS; http://diss.rm.ingv.it/diss/), selecting, and modifying where appropriate, all the fault systems that are recognized in the portion of Central Italy considered in this study, with a total of 54 faults. Besides tectonic stress loading and static stress transfer as in the previous versions, the physical model on which the latest version of our simulation algorithm is based also includes the Rate and State constitutive law that helps to reproduce Omori’s law. One further improvement in our code was also the introduction of trapezoidalshaped faults that perform better than known faults. The resulting synthetic seismic catalogue exhibits typical magnitude, space and time features which are comparable to those in real observations. These features include the total seismic moment rate, the earthquake magnitude distribution, and the short- and medium-term earthquake clustering. A typical aspect of the observed seismicity in Central Italy, aswell as across thewhole Italian landmass and elsewhere, is the occurrence of earthquake sequences characterized by multiple main shocks of similar magnitude. These sequences are different from the usual earthquake clusters and aftershock sequences, since they have at least two main shocks of similar magnitude. Therefore, special attentionwas devoted to verifyingwhether the simulated catalogue includes this notable aspect. For this purpose, we developed a computer code especially for this work to count the number of multiple events contained in a seismic catalogue under a quantitative definition. We found that the last version of the simulator code produces a slightly larger number of multiple events than the previous versions, but not as large as in the real catalogue. A possible reason for this drawback is the lack of components such as pore-pressure changes due to fluid-diffusion in the adopted physical model.
    Description: Published
    Description: 526–542
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-19
    Description: Eastern Boundary Upwelling Ecosystems (EBUEs) are associated with high biological productivity, high fish catch and they highly contribute to marine carbon sequestration. Whether coastal upwelling has intensified or weakened under climate change in the past decades is controversially discussed and different approaches (e.g., time-series of chlorophyll, wind, sea surface temperature, modeling experiments) have been considered. We present a record of almost two decades of particle fluxes (1991–2009) from ca. 600 to 3100 m water depth in the Canary Basin at site ESTOC (European Station for Time series in the Ocean Canary Islands; ca. 29°N, 15°30.W, ca. 3600 m water depth), located in the offshore transition zone of the northern Canary Current-EBUE. We compare these flux records with those measured at a mesotrophic sediment trap site further south off Cape Blanc (Mauritania, ca. 21°N). The deep ocean fluxes at ESTOC in ca. 3 km recorded the evolution of the coastal Cape Ghir filament (30–32°N, 10–12°W) due to lateral advection of particles, whereas the upper water column sediment traps in ca. 1 km reflected the oligotrophic conditions in the overlying waters of ESTOC. We observed an increased emphasis in spring-time fluxes since 2005, associated with a change in particle composition, while satellite chlorophyll biomass did not show this pattern. Due to its northern location in the CC-EBUEs, spring biogenic fluxes at ESTOC provide a better relationship to the forcing of the North Atlantic Oscillation than those recorded further south off Cape Blanc. Off Cape Blanc, deep fluxes showed the best overlap with the deep ESTOC fluxes during the spring season before 2005. On the long-term, both chlorophyll and particle fluxes showed an increasing trend at ESTOC which was not observed further south at the mesotrophic Cape Blanc site. This might indicate that, depending on their location along the NW African margin, coastal upwelling systems react differently to global change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-29
    Description: The use of the silicon isotope composition of dissolved silicon (δ30Si-DSi) to understand the marine silicon cycle has been increasing in recent years. Here we present δ30Si-DSi and δ30Si of biogenic silica (δ30Si-bSiO2) in the intermediate to deep waters of the Central Arctic Ocean (AO) aiming at investigating in more detail the relative influence of water mass mixing and particle flux on the Si cycle in the AO. Comparing the δ30Si-DSi with the water mass composition derived from Optimum Multiparameter (OMP) analysis, we were able to test the influence of the water masses in the δ30Si-DSi distribution. We were able to show the dominant Atlantic Water (AW) influence at the stations close to the Fram Strait (station 32 and 40, δ30Si-DSi = 1.51 ± 0.11‰, 2SEM, n = 3) and the only small δ30Si-DSi modification when compared to the endmember value from a previous study (δ30Si-DSi = 1.55‰). The Dense Arctic Atlantic Water, dominating from 200 to 500 m water depth (except for stations 32 and 40, where it was present only at 500 m), was marked by heavier δ30Si-DSi of 1.62 ± 0.06‰ (2SEM, n = 21). This is probably due to the influence of entraining equally dense water from the shelves. Due to productivity and Si utilization on the shelves, both water and bSiO2, that were transported laterally into the Central AO, were characterized by higher δ30Si, with δ30Si-bSiO2 of 1.64 ± 0.13‰ (2SEM, n = 7). Particle dissolution at greater depths did not play a major role in the δ30Si-DSi of deep waters due to the low bSiO2 concentrations at these greater depths. Outflowing water masses from the AO present different δ30Si-DSi, with lower values around 1.46‰ originating from the Central AO influencing predominantly DSOW and ISOW, and higher values around 2‰ originating from the Canadian AO influencing predominantly LSW. Those signatures correspond with the δ30Si-DSi found in the North Atlantic. Consequently, the AO potentially presents several isotopically different endmembers that contribute to the deep water formed in the North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-21
    Description: The highly populated coasts of the Bay of Bengal are particularly vulnerable to water-borne diseases, pollution and climatic extremes. The environmental factors behind bacterial community composition and Vibrio distribution were investigated in an estuarine system of a cholera-endemic region in the coastline of Bangladesh. Higher temperatures and sewage pollution were important drivers of the abundance of toxigenic Vibrio cholerae. A closer relation between non-culturable Vibrio and particulate organic matter (POM) was inferred during the post-monsoon. The distribution of operational taxonomic units (OTUs) of Vibrio genus was likely driven by salinity and temperature. The resuspension of sediments increased Vibrio abundance and organic nutrient concentrations. The d13C dynamic in POM followed an increasing gradient from freshwater to marine stations; nevertheless, it was not a marker of sewage pollution. Bacteroidales and culturable coliforms were reliable indicators of untreated wastewater during pre and post-monsoon seasons. The presumptive incorporation of depletedammonium derived from ammonification processes under the hypoxic conditions, by some microorganisms such as Cloacibacterium and particularly by Arcobacter nearby the sewage discharge, contributed to the drastic 15N depletion in the POM. The likely capacity of extracellular polymeric substances production of these taxa may facilitate the colonization of POM from anthropogenic origin and may signify important properties for wastewater bioremediation. Genera of potential pathogens other than Vibrio associated with sewage pollution were Acinetobacter, Aeromonas, Arcobacter, and Bergeyella. The changing environmental conditions of the estuary favored the abundance of early colonizers and the island biogeography theory explained the distribution of some bacterial groups. This multidisciplinary study evidenced clearly the eutrophic conditions of the Karnaphuli estuary and assessed comprehensively its current bacterial baseline and potential risks. The prevailing conditions together with human overpopulation and frequent natural disasters, transform the region in one of the most vulnerable to climate change. Adaptive management strategies are urgently needed to enhance ecosystem health.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-05-04
    Description: Three-dimensional hydrogels of organic polymers have been suggested to affect a variety of processes in the ocean, including element cycling, microbial ecology, food-web dynamics, and air-sea exchange. However, their abundance and distribution in the ocean are hardly known, strongly limiting an assessment of their global significance. As a consequence, marine gels are often disregarded in biogeochemical or ecosystem models. Here, we demonstrate the widespread abundance of microgels in the ocean, from the surface to the deep sea. We exhibit size spectra of two major classes of marine gels, transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) for three different ocean regimes: (a) Polar Seas, (b) Eastern Boundary Upwelling Systems, and (c) the oligotrophic open ocean. We show the variations of TEP and CSP over the water-column, and compare them to dissolved organic carbon (DOC). We also discuss how the observed distributional patterns inform about productivity and particle dynamics of these distinct oceanic regimes. Finally, we exploit current research topics, where consideration of microgels may give new insight into the role of organic matter for marine biogeochemical processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-08
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC016007, doi:10.1029/2019JC016007.
    Description: Benthic inputs of nutrients help support primary production in the Chukchi Sea and produce nutrient‐rich water masses that ventilate the halocline of the western Arctic Ocean. However, the complex biological and redox cycling of nutrients and trace metals make it difficult to directly monitor their benthic fluxes. In this study, we use radium‐228, which is a soluble radionuclide produced in sediments, and a numerical model of an inert, generic sediment‐derived tracer to study variability in sediment inputs to the Chukchi Sea. The 228Ra observations and modeling results are in general agreement and provide evidence of strong benthic inputs to the southern Chukchi Sea during the winter, while the northern shelf receives higher concentrations of sediment‐sourced materials in the spring and summer due to continued sediment‐water exchange as the water mass traverses the shelf. The highest tracer concentrations are observed near the shelfbreak and southeast of Hanna Shoal, a region known for high biological productivity and enhanced benthic biomass.
    Description: This study presents data from multiple Arctic expeditions over the past two decades, and we are indebted to the captains, crews, and scientific parties that made this data collection possible. This work was funded by NSF awards OCE‐1458305 to M. Charette, OCE‐1458424 to W. Moore, OCE‐1434085 to D. Kadko, PLR‐1504333 to R. Pickart, and OPP‐1822334 to M. Spall. Funding was also provided by National Oceanic and Atmospheric Administration Grant NA14‐OAR4320158 to R. Pickart. L. Kipp was supported by an Ocean Frontier Institute Postdoctoral Fellowship. Radium data used in this manuscript are available in Table S1.
    Description: 2020-10-27
    Keywords: Chukchi Sea ; Benthic flux ; Radium‐228 ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-09
    Description: Zooplankton organisms are a central part of pelagic ecosystems. They feed on all kinds of particulate matter and their egested fecal pellets contribute substantially to the passive sinking flux to depth. Some zooplankton species also conduct diel vertical migrations (DVMs) between the surface layer (where they feed at nighttime) and midwater depth (where they hide at daytime from predation). These DVMs cause the active export of organic and inorganic matter from the surface layer as zooplankton organisms excrete, defecate, respire, die, and are preyed upon at depth. In the Eastern Tropical North Atlantic (ETNA), the daytime distribution depth of many migrators (300–600 m) coincides with an expanding and intensifying oxygen minimum zone (OMZ). We here assess the day and night-time biomass distribution of mesozooplankton with an equivalent spherical diameter of 0.39–20 mm in three regions of the ETNA, calculate the DVM-mediated fluxes and compare these to particulate matter fluxes and other biogeochemical processes. Integrated mesozooplankton biomass in the ETNA region is about twice as high at a central OMZ location (cOMZ; 11° N, 21° W) compared to the Cape Verde Ocean Observatory (CVOO; 17.6° N, 24.3° W) and an oligotrophic location at 5° N, 23° W (5N). An Intermediate Particle Maximum (IPM) is particularly strong at cOMZ compared to the other regions. This IPM seems to be related to DVM activity. Zooplankton DVM was found to be responsible for about 31–41% of nitrogen loss from the upper 200m of the water column. Gut flux and mortality make up about 31% of particulate matter supply to the 300–600 m depth layer at cOMZ, whereas it makes up about 32% and 41% at CVOO and 5N, respectively. Resident and migrant zooplankton are responsible for about 7–27% of the total oxygen demand at 300–600 m depth. Changes in zooplankton abundance and migration behavior due to decreasing oxygen levels at midwater depth could therefore alter the elemental cycling of oxygen and carbon in the ETNA OMZ and impact the removal of nitrogen from the surface layer.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Deep-towed geophysical surveys require precise knowledge of navigational parameters such as instrument position and orientation because navigational uncertainties reflect in the data and therefore in the inferred geophysical properties of the subseafloor. We address this issue for the case of electrical conductivity inferred from controlled source electromagnetic data. We show that the data error is laterally variable due to irregular motion during deep towing, but also due to lateral variations in conductivity, including those resulting from topography. To address this variability and quantify the data error prior to inversion, we propose a 2-D perturbation study. Our workflow enables stable and geologically reliable results for multicomponent and multifrequency inversions. An error estimation workflow is presented, which comprises the assessment of navigational uncertainties, perturbation of navigational parameters, and forward modelling of electric field amplitudes for a homogeneous and then a heterogeneous subseafloor conductivity model. Some navigational uncertainties are estimated from variations of direct measurements. Other navigational parameters required for inversion are derived from the measured quantities and their error is calculated by means of error propagation. Some navigational parameters show direct correlation with the measured electric fields. For example, the antenna dip correlates with the vertical electric field and the depth correlates with the horizontal electric field. For the perturbation study each standard deviation is added to the navigational parameters. Forward models are run for each perturbation. Amplitude deviations are summed in quadrature with the stacking error for a total, laterally varying, data error. The error estimation is repeated for a heterogeneous subseafloor model due to the large conductivity range (several orders of magnitude), which affects the forward model. The approach enables us to utilize data from several components (multiple electric fields, frequencies and receivers) in the inversion to constrain the final model and reduce ambiguity. The final model is geologically reasonable, in this case enabling the identification of conductive metal sulphide deposits on the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Along the Norwegian coasts and margins, extensive reefs of the stony coral Lophelia pertusa act as hotspots for local biodiversity. Climate models project that the temperature of Atlantic deep waters could rise by 1–3°C by 2100. In this context, understanding the effects of temperature on the physiology of cold-water species will help in evaluating their resilience to future oceanic changes. We investigated the response of L. pertusa to stepwise short-term increases in temperature. We sampled corals from four reefs, two located north of the Arctic circle and two at the mid-Norwegian shelf (boreal). In on-board experiments (one per reef), the sampled fragments were exposed to increasing temperatures from 5 to 15°C over 58 h. Respiration increased linearly by threefold for a 10°C increase. The short-term temperature increase did not induce mortality, cellular (neutral red assay for lysosome membrane stability; but one exception) or oxidative stress (lipid peroxidation assay) – to a few exceptions. However, the variability of the respiration responses depended on the experiment (i.e., reef location), possibly linked to the genetic structure of the individuals that we sampled (e.g., clones or siblings). The corals from the Arctic and boreal regions appear to have a high tolerance to the rapid temperature fluctuations they experience in the field. Over extended periods of time however, an increased metabolism could deplete the energy stored by the corals, if not met by an increased food availability and/or uptake. Empirical data on organisms’ thermal performance curves, such as the one presented in this study for L. pertusa, will be useful to implement predictive models on the responses of species and populations to climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...