ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (80)
  • AGU (American Geophysical Union)  (74)
  • Cambridge University Press
  • Oxford Univ. Press
  • 2020-2024  (80)
  • 2020  (80)
  • 1
    Publication Date: 2023-02-08
    Description: Climate engineering (CE) measures are increasingly discussed when dealing with the adverse impacts of climate change. While much research has focused on individual methods, few studies attempt to compare and rank the effectiveness of these measures. Furthermore, model uncertainties are seldom acknowledged and lesser still, estimated when CE scenarios are assessed. In this work, we quantify the variance in outcomes due to poorly constrained model parameters under several idealized CE scenarios. The four scenarios considered are (1) warming under the high emission scenario Representative Concentration Pathway 8.5 without CE applied and the same emission scenario with (2) afforestation,(3) solar radiation management, and (4) artificial ocean alkalinization. By considering the parametric uncertainty in model outputs, we demonstrate the problems with comparing these scenarios using a single parameter setting. Using statistical emulation, we estimate the probability distributions of several model outcomes. Based on such distributions, we suggest an approach to ranking the effectiveness of the scenarios considered according to their probability of avoiding climate thresholds.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: A new estimate of Agulhas leakage transport is calculated using profiling floats and drifters. Since Richardson's seminal estimate of 15 Sv in 2007, the number of floats and drifters passing through the Agulhas Current has quadrupled. Within uncertainties we find the same leakage percentages as Richardson, with 34% of drifters leaking at the surface and 21% of floats leaking at 1,000 m depth. We find that the drifters tend to follow a northward leakage pathway via the Benguela Current compared to the northwestward leakage pathway of the floats along the Agulhas Ring corridor. We simulate the isobaric and profiling behavior of the floats and drifters using two high resolution models and two offline Lagrangian tracking tools, quantifying for the first time the sampling biases associated with the observations. We find that the isobaric bias cannot be robustly simulated but likely causes an underestimate of observed leakage by one or two Sverdrups. The profiling behavior of the floats causes no significant bias in the leakage. Fitting a simulated vertical leakage profile to the observed leakage percentages from the floats and drifters and using the mean Agulhas transport observed by a moored array at 34°S we find an improved Agulhas leakage transport of 21.3 Sv, with an estimated error of 4.7 Sv. Our new leakage transport is higher primarily because we account for leakage at depths down to 2,000 m, while Richardson considered only the top 1,000 m of the water column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Upwelling ocean currents associated with oxygen minimum zones (OMZs) supply nutrients fuelling intense marine productivity. Perturbations in the extent and intensity of OMZs are projected in the future, but it is currently uncertain how this will impact fluxes of redox‐sensitive trace metal micronutrients to the surface ocean. Here we report seawater concentrations of Fe, Mn, Co, Cd, and Ni alongside the redox indicator iodide/iodate in the Peruvian OMZ during the 2015 El Niño event. The El Niño drove atypical upwelling of oxygen‐enriched water over the Peruvian Shelf, resulting in oxidized iodine and strongly depleted Fe (II), total dissolved Fe, and reactive particulate Fe concentrations relative to non‐El Niño conditions. Observations of Fe were matched by the redox‐sensitive micronutrients Co and Mn, but not by non‐redox‐sensitive Cd and Ni. These observations demonstrate that oxygenation of OMZs significantly reduces water column inventories of redox‐sensitive micronutrients, with potential impacts on ocean productivity. Plain Language Summary Some trace metals, including iron, are essential micronutrients for phytoplankton growth. However, the solubility of iron is very low under oxygenated conditions. Consequently, restricted iron availability in oxygen‐rich seawater can limit phytoplankton growth in the ocean, including in the Eastern Tropical South Pacific. Under typical conditions, depleted oxygen on the South American continental shelf is generally thought to enhance iron supply to the ocean, fuelling phytoplankton productivity in overlying waters. However, the impact of changes in oxygenation, which are predicted to occur in the future, are not known. The 2015 El Niño event led to unusually high oxygen on the Peruvian shelf, offering a system‐scale test on how oxygen influences seawater iron concentrations. We show that El Niño‐driven oxygenation resulted in marked decreases in iron and other metals sensitive to oxygen (cobalt and manganese), whilst metals not sensitive to oxygen (cadmium and nickel) were unaffected. The measured reductions in iron may have led to decreased phytoplankton productivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: The causes of the seasonal cycle of vertical turbulent cooling at the base of the mixed layer are assessed using observations from moored buoys in the tropical Atlantic Intertropical Convergence Zone (ITCZ) (4°N, 23°W) and trade wind (15°N, 38°W) regions together with mixing parameterizations and a one-dimensional model. At 4°N the parameterized turbulent cooling rates during 2017–2018 and 2019 agree with indirect estimates from the climatological mooring heat budget residual: both show mean cooling of 25–30 W m (Formula presented.) during November–July, when winds are weakest and the mixed layer is thinnest, and 0–10 W m (Formula presented.) during August–October. Mixing during November–July is driven by variability on multiple time scales, including subdiurnal, near-inertial, and intraseasonal. Shear associated with tropical instability waves (TIWs) is found to generate mixing and monthly mean cooling of 15–30 W m (Formula presented.) during May–July in 2017 and 2019. At 15°N the seasonal cycle of turbulent cooling is out of phase compared to 4°N, with largest cooling of up to 60 W m (Formula presented.) during boreal fall. However, the relationships between wind speed, mixed layer depth, and turbulent mixing are similar: weaker mean winds and a thinner mixed layer in the fall are associated with stronger mixing and turbulent cooling of SST. These results emphasize the importance of seasonal modulations of mixed layer depth at both locations and shear from TIWs at 4°N.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Submarine groundwater discharge (SGD) into coastal areas is a common global phenomenon and is rapidly gaining scientific interest due to its influence on marine ecology, the coastal sedimentary environment and its potential as a future freshwater resource. We conducted an integrated study of hydroacoustic surveys combined with geochemical porewater and water column investigations at a well‐known groundwater seep site in Eckernförde Bay (Germany). We aim to better constrain the effects of shallow gas and SGD on high frequency multibeam backscatter data and to present acoustic indications for submarine groundwater discharge. Our high‐quality hydroacoustic data reveal hitherto unknown internal structures within the pockmarks in Eckernförde Bay. Using precisely positioned sediment core samples, our hydroacoustic‐geochemical approach can differentiate intra‐pockmark regimes that were formerly assigned to pockmarks of a different nature. We demonstrate that high‐frequency multibeam data, in particular the backscatter signals, can be used to detect shallow free gas in areas of enhanced groundwater advection in muddy sediments. Intriguingly, our data reveal relatively small (typically 〈15 m across) pockmarks within the much larger, previously mapped, pockmarks. The small pockmarks, which we refer to as “intra‐pockmarks”, have formed due to the localized ascent of gas and groundwater; they manifest themselves as a new type of ‘eyed’ pockmarks, revealed by their acoustic backscatter pattern. Our data suggest that, in organic‐rich muddy sediments, morphological lows combined with a strong multibeam backscatter signal can be indicative of free shallow gas and subsequent advective groundwater flow.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25‐50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s‐1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Key Points: - The Kamchatka arc lavas show across-arc variations in chalcophile elements, suggesting that the amount of fluid decreases with depth - Slab-derived fluids have a negligible contribution to the Li budget of the Kamchatka arc lavas - CKD lavas have high U/Th, Li/Y, La/Sm and B/Nb ratios, indicating that lawsonite breakdown reaction dominates the water release Chalcophile elements and lithium (Li) isotopes were measured on lavas from a 220 km transect across the Kamchatka arc in order to investigate the fluid variations below arc volcanoes and to trace the geochemical behaviour of Li in convergent plate margins. From the Eastern Volcanic Front (EVF), through the Central Kamchatka Depression (CKD), into the Sredinny Range (SR) volcanic zones, chalcophile element ratios (e.g., As/Ce and Sb/Ce) show clear across‐arc variations, decreasing (e.g., As/Ce: 0.20 to 0.03 and Sb/Ce: 0.013 to 0.002) with increasing depth above the slab (110 to 400 km). This clearly indicates a gradually decreasing influx of slab‐derived fluids added to the mantle wedge as the slab subducts below Kamchatka. In addition, the anomalously high U/Th, La/Sm and B/Nb ratios in the CKD lavas suggest lawsonite breakdown reaction dominates the fluid release in this area. However, Li/Y (0.07 to 1.78) and δ7Li (+1.8 to +5.4‰, with an exception of +8.6‰ in CKD) show limited variations and values similar to the MORB mantle. A dehydration model suggests that slab‐derived fluids, which are characterized by high Li concentration and high δ7Li, do not control the Li budget in Kamchatka arc lavas. Therefore, the isotopic heavy Li from slab‐derived fluids likely equilibrates in the sub‐arc mantle, which acts as a buffer for Li systematics. In addition, based on the Li isotopic signatures of Klyuchevskoy volcano, our study demonstrates insignificant Li isotopic fractionation during mantle melting and subsequent differentiation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: The Endeavour Segment of the Juan de Fuca Ridge is well known for its abundance of hydrothermal vents and chimneys. One-meter scale multibeam mapping data collected by an autonomous undersea vehicle revealed 572 chimneys along the central 14 km of the segment, although only 47 are named and known to be active. Hydrothermal deposits are restricted to the axial graben and the near-rims of the graben above a seismically mapped axial magma lens. The sparse eruptive activity on the segment during the last 4,300 years has not buried inactive chimneys, as occurs at more magmatically robust mid-ocean ridges.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Although the core velocity of the Atlantic North Equatorial Undercurrent (NEUC) is low (0.1−0.3 m s−1), it has been suggested to act as an important oxygen supply route towards the oxygen minimum zone in the eastern tropical North Atlantic. For the first time, the intraseasonal to interannual NEUC variability and its impact on oxygen are investigated based on shipboard and moored velocity observations around 5°N, 23°W. In contrast to previous studies that were mainly based on models or hydrographic data, we find hardly any seasonal cycle of NEUC transports in the central Atlantic. The NEUC transport variability is instead dominated by sporadic intraseasonal events. Only some of these events are associated with high oxygen levels suggesting an occasional eastward oxygen supply by NEUC transport events. Nevertheless, they likely contribute to the local oxygen maximum in the mean shipboard section along 23°W at the NEUC core position.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: The Arctic Ocean is particularly vulnerable to ocean acidification, a process that is mainly driven by the uptake of anthropogenic carbon (Cant) from the atmosphere. Although Cant concentrations cannot be measured directly in the ocean, they have been estimated using data‐based methods such as the transient time distribution (TTD) approach, which characterizes the ventilation of water masses with inert transient tracers, such as CFC‐12. Here, we evaluate the TTD approach in the Arctic Ocean using an eddying ocean model as a test bed. When the TTD approach is applied to simulated CFC‐12 in that model, it underestimates the same model's directly simulated Cant concentrations by up to 12%, a bias that stems from its idealized assumption of gas equilibrium between atmosphere and surface water, both for CFC‐12 and anthropogenic CO2. Unlike the idealized assumption, the simulated partial pressure of CFC‐12 (p CFC‐12) in Arctic surface waters is undersaturated relative to that in the atmosphere in regions and times of deep‐water formation, while the simulated equivalent for Cant is supersaturated. After accounting for the TTD approach's negative bias, the total amount of Cant in the Arctic Ocean in 2005 increases by 8% to 3.3 ± 0.3 Pg C. By combining the adjusted TTD approach with scenarios of future atmospheric CO2, it is estimated that all Arctic waters, from surface to depth, would become corrosive to aragonite by the middle of the next century even if atmospheric CO2 could be stabilized at 540 ppm.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...