ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-08-15
    Description: Up to 95% of the oceanic primary production is recycled within the upper few hundred meters of the water column. Marine snow and zooplankton fecal pellets in the upper water column are often recycled at rates exceeding those measured for microbial degradation, suggesting that zooplankton might be important for flux attenuation of particulate organic carbon in the upper ocean. However, direct evidence for interactions between zooplankton and settling aggregates are still rare. We investigated the importance of zooplankton aggregate feeding for carbon flux attenuation in the upper ocean by determining aggregate ingestion rates and feeding behavior on settling aggregates by the dominant Arctic filter-feeding copepods Calanus spp. and Pseudocalanus spp. Both genera were observed to detect and feed on settling aggregates. Using in situ zooplankton and aggregate abundances in combination with the measured aggregate feeding rates, we calculated that 60–67% of the total carbon flux attenuation at three Arctic locations could be explained by Calanus spp. and Pseudocalanus spp. aggregate feeding alone. When including microbial degradation of the settling aggregates, we could explain up to 77% of the total carbon flux attenuation. Our results suggest that by directly ingesting and fragmenting settling marine snow, mesozooplankton are key organisms for flux attenuation in Arctic waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-08-15
    Description: Zooplankton and nekton organisms create and destroy particles in manifold ways. They feed on the diverse components of the plankton community and on detrital matter. They disaggregate these components, but also repackage them into fecal pellets. Zooplankton and nekton thereby contributes to the attenuation, but also to the export of vertically settling particles. Many zooplankton and nekton organisms also ascend to the surface layer of the ocean at dusk to feed during the dark hours, and return to midwater at the break of dawn. This diurnal vertical migration (DVM) shuttles organic matter from the surface ocean to deeper layers, where it is metabolized and excreted. This active flux (as opposed to the passive flux of sinking particles) can contribute substantially to the biological pump, the downward export of carbon and nutrients into the oceans interior. Due to their multiple roles in oceanic particle dynamics, zooplankton and nekton organisms can actually be considered the gatekeepers of the biological pump.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-11-03
    Description: 〈jats:p〉Kelps in the Arctic region are facing challenging natural conditions. They experience over 120 days of darkness during the polar night surviving on storage compounds without conducting photosynthesis. Furthermore, the Arctic is experiencing continuous warming as a consequence of climate change. Such temperature increase may enhance the metabolic activity of kelps, using up storage compounds faster. As the survival strategy of kelps during darkness in the warming Arctic is poorly understood, we studied the physiological and transcriptomic responses of 〈jats:italic〉Saccharina latissima〈/jats:italic〉, one of the most common kelp species in the Arctic, after a 2-week dark exposure at two temperatures (0 and 4°C) versus the same temperatures under low light conditions. Growth rates were decreased in darkness but remained stable at two temperatures. Pigments had higher values in darkness and at 4°C. Darkness had a greater impact on the transcriptomic performance of 〈jats:italic〉S. latissima〈/jats:italic〉 than increased temperature according to the high numbers of differentially expressed genes between dark and light treatments. Darkness generally repressed the expression of genes coding for glycolysis and metabolite biosynthesis, as well as some energy-demanding processes, such as synthesis of photosynthetic components and transporters. Moreover, increased temperature enhanced these repressions, while the expression of some genes encoding components of the lipid and laminaran catabolism, glyoxylate cycle and signaling were enhanced in darkness. Our study helps to understand the survival strategy of kelp in the early polar night and its potential resilience to the warming Arctic.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...