ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • In situ oceanic observations  (3)
  • American Meteorological Society  (3)
  • MDPI Publishing
  • Public Library of Science
  • 2020-2023  (3)
  • 2020  (3)
Sammlung
Verlag/Herausgeber
  • American Meteorological Society  (3)
  • MDPI Publishing
  • Public Library of Science
Erscheinungszeitraum
  • 2020-2023  (3)
Jahr
  • 1
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(12), (2019): 3127-3143, doi: 10.1175/JPO-D-19-0011.1.
    Beschreibung: The Intermediate Western Boundary Current (IWBC) transports Antarctic Intermediate Water across the Vitória–Trindade Ridge (VTR), a seamount chain at ~20°S off Brazil. Recent studies suggest that the IWBC develops a strong cyclonic recirculation in Tubarão Bight, upstream of the VTR, with weak time dependency. We herein use new quasi-synoptic observations, data from the Argo array, and a regional numerical model to describe the structure and variability of the IWBC and to investigate its dynamics. Both shipboard acoustic Doppler current profiler (ADCP) data and trajectories of Argo floats confirm the existence of the IWBC recirculation, which is also captured by our Regional Oceanic Modeling System (ROMS) simulation. An “intermediate-layer” quasigeostrophic (QG) model indicates that the ROMS time-mean flow is a good proxy for the IWBC steady state, as revealed by largely parallel isolines of streamfunction ψ⎯ and potential vorticity Q⎯; a ψ⎯−Q⎯ scatter diagram also shows that the IWBC is potentially unstable. Further analysis of the ROMS simulation reveals that remotely generated, westward-propagating nonlinear eddies are the main source of variability in the region. These eddies enter the domain through the Tubarão Bight eastern edge and strongly interact with the IWBC. As they are advected downstream and negotiate the local topography, the eddies grow explosively through horizontal shear production.
    Beschreibung: We thank Frank O. Smith for copy editing and proofreading this manuscript. This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Brazil—Finance Code 001 and by Projeto REMARSUL (Processo CAPES 88882.158621/2014-01), Projeto VT-Dyn (Processo FAPESP 2015/21729-4) and Projeto SUBMESO (Processo CNPq 442926/2015-4). Rocha was supported by a WHOI Postdoctoral Scholarship.
    Beschreibung: 2020-06-06
    Schlagwort(e): South Atlantic Ocean ; Instability ; Mesoscale processes ; Intermediate waters ; In situ oceanic observations ; Quasigeostrophic models
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 887-905, doi:10.1175/JPO-D-19-0110.1.
    Beschreibung: The Equatorial Undercurrent (EUC) encounters the Galápagos Archipelago on the equator as it flows eastward across the Pacific. The impact of the Galápagos Archipelago on the EUC in the eastern equatorial Pacific remains largely unknown. In this study, the path of the EUC as it reaches the Galápagos Archipelago is measured directly using high-resolution observations obtained by autonomous underwater gliders. Gliders were deployed along three lines that define a closed region with the Galápagos Archipelago as the eastern boundary and 93°W from 2°S to 2°N as the western boundary. Twelve transects were simultaneously occupied along the three lines during 52 days in April–May 2016. Analysis of individual glider transects and average sections along each line show that the EUC splits around the Galápagos Archipelago. Velocity normal to the transects is used to estimate net horizontal volume transport into the volume. Downward integration of the net horizontal transport profile provides an estimate of the time- and areal-averaged vertical velocity profile over the 52-day time period. Local maxima in vertical velocity occur at depths of 25 and 280 m with magnitudes of (1.7 ± 0.6) × 10−5 m s−1 and (8.0 ± 1.6) × 10−5 m s−1, respectively. Volume transport as a function of salinity indicates that water crossing 93°W south (north) of 0.4°S tends to flow around the south (north) side of the Galápagos Archipelago. Comparisons are made between previous observational and modeling studies with differences attributed to effects of the strong 2015/16 El Niño event, the annual cycle of local winds, and varying longitudes between studies of the equatorial Pacific.
    Beschreibung: This work was supported by National Science Foundation (Grants OCE-1232971 and OCE-1233282) and the NASA Earth and Space Science Fellowship Program (Grant 80NSSC17K0443).
    Schlagwort(e): Tropics ; Boundary currents ; Topographic effects ; Transport ; Upwelling/downwelling ; In situ oceanic observations
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Martini, K. I., Murphy, D. J., Schmitt, R. W., & Larson, N. G. Reply to "comments on 'corrections for pumped SBE 41CP CTDs determined from stratified tank experiments'". Journal of Atmospheric and Oceanic Technology, 37(2), (2020): 357-363, doi:10.1175/JTECH-D-19-0171.1.
    Beschreibung: The response in Johnson (2020) that the method used to determine cell thermal mass correction coefficients for SBE 41CP CTD data from Argo floats is biased as determined by Martini et al. (2019) is valid. However, the recommendation for correction coefficients should not be followed due to these three errors in Johnson (2020): Alignment is as large a source of dynamic error as cell thermal mass in the SBE 41CP CTD. Order of operations was overlooked, so that cell thermal mass is used to correct for alignment errors caused by the temporal mismatch of temperature and conductivity. The cell thermal mass corrections determined in Johnson et al. (2007) and Johnson (2020) also bias salinity. In this response we will do the following: Detail how the corrections in Johnson (2020) are biased because the optimization procedure does not accurately model physics in the tank and conductivity cell. Verify using in situ data from Argo floats deployed in the ocean that alignment is a significant source of error for the SBE 41CP as shown in Martini et al. (2019). Determine cell thermal mass correction coefficients from the stratified tank experiment merging the methods of Johnson (2020) and Martini et al. (2019) to optimize against a model that better represents the physics in the tank and conductivity cell. Compare the corrections using in situ data using the coefficients determined in Johnson et al. (2007), Martini et al. (2019), Johnson (2020), and this manuscript.
    Beschreibung: Thanks to Pelle Robbins for finding the in situ profiles used for this analysis in the vast database of Argo floats, John Gilson showing me how to access that high-resolution data, Ray Schmitt for use of the stratified tank, Susan Wijffels, Breck Owens, and Annie Wong for intellectual support, and Diego Sorrentino and Vlad Simontov for validating the sampling scheme in the SBE 41CP.
    Beschreibung: 2020-08-24
    Schlagwort(e): Ocean ; Algorithms ; Data processing ; In situ oceanic observations ; Measurements ; Profilers, oceanic
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...