ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Climate change  (10)
  • Diapycnal mixing
  • Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu  (7)
  • American Meteorological Society  (6)
  • Oxford University Press
  • Public Library of Science (PLoS)
  • Springer Nature
  • 2020-2023  (13)
  • 2020  (13)
Sammlung
Verlag/Herausgeber
  • Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu  (7)
  • American Meteorological Society  (6)
  • Oxford University Press
  • Public Library of Science (PLoS)
  • Springer Nature
  • +
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Hahn, L. C., Storelvmo, T., Hofer, S., Parfitt, R., & Ummenhofer, C. C. Importance of Orography for Greenland cloud and melt response to atmospheric blocking. Journal of Climate, 33(10), (2020): 4187-4206, doi:10.1175/JCLI-D-19-0527.1.
    Beschreibung: More frequent high pressure conditions associated with atmospheric blocking episodes over Greenland in recent decades have been suggested to enhance melt through large-scale subsidence and cloud dissipation, which allows more solar radiation to reach the ice sheet surface. Here we investigate mechanisms linking high pressure circulation anomalies to Greenland cloud changes and resulting cloud radiative effects, with a focus on the previously neglected role of topography. Using reanalysis and satellite data in addition to a regional climate model, we show that anticyclonic circulation anomalies over Greenland during recent extreme blocking summers produce cloud changes dependent on orographic lift and descent. The resulting increased cloud cover over northern Greenland promotes surface longwave warming, while reduced cloud cover in southern and marginal Greenland favors surface shortwave warming. Comparison with an idealized model simulation with flattened topography reveals that orographic effects were necessary to produce area-averaged decreasing cloud cover since the mid-1990s and the extreme melt observed in the summer of 2012. This demonstrates a key role for Greenland topography in mediating the cloud and melt response to large-scale circulation variability. These results suggest that future melt will depend on the pattern of circulation anomalies as well as the shape of the Greenland Ice Sheet.
    Beschreibung: This research was supported by the Woods Hole Oceanographic Institution Summer Student Fellow program, by the U.S. National Science Foundation under AGS-1355339 to C.C.U., and by the European Research Council through Grant 758005.
    Schlagwort(e): Ice sheets ; Blocking ; Cloud cover ; Topographic effects ; Climate change ; Climate variability
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Ehux growth rates under thermal variation
    Beschreibung: This dataset includes the growth rates under low and high temperatures for E. huxleyi in constant and fluctuating thermal environments. Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 °C) and high (25.5 °C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782888
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
    Schlagwort(e): Thermal Performance Curves ; Growth Rates ; Emiliania huxleyi ; Climate change ; Calcification ; Elemental quotas
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Ehux physiology under thermal variation
    Beschreibung: Intracellular elemental quotas under low and high temperatures for E. huxleyi in constant and fluctuating thermal environments. This dataset includes the growth rates under low and high temperatures for E. huxleyi in constant and fluctuating thermal environments. Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 °C) and high (25.5 °C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782901
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
    Schlagwort(e): Thermal Performance Curves ; Growth Rates ; Emiliania huxleyi ; Climate change ; Calcification ; Elemental quotas
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Thalassiosira pseudonana CCMP1335 in nitrate-limited and nutrient-replete cultures
    Beschreibung: The marine diatom Thalassiosira pseudonana clone CCMP 1335 was grown in a continuous culture system on a 14:10 light-dark cycle under either nitrate-limited or nutrient-replete conditions, a photoperiod irradiance of either 50 or 300 micro-mol photons per square meter per second, partial pressures of either 400 or 1000 ppm CO2, and temperatures ranging from 5 to 32 degrees Celsius. Growth rates, photosynthetic rates, respiration rates, C:N ratios, C:Chlorophyll-a ratios, productivity indices, Fv/Fm ratios, and the initial slope and light-saturated asymptote of short-term photosynthesis-irradiance curves are reported. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/779368
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1536581
    Schlagwort(e): Climate change ; Phytoplankton ; Light ; Temperature ; CO2 partial pressure ; Acclimation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Ehux growth rates for thermal response curve
    Beschreibung: This dataset presents growth rates for Emiliania huxleyi thermal response curve across 12 temperatures from 8.5-28.6C.Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 °C) and high (25.5 °C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782911
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
    Schlagwort(e): Thermal Performance Curves ; Growth Rates ; Emiliania huxleyi ; Climate change ; Calcification ; Elemental quotas
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Ehux elemental composition across thermal range
    Beschreibung: This dataset includes elemental stoichiometry for Emiliania huxleyi across a range of 12 temperatures from 8.5-28.6C. Global warming will be combined with predicted increases in thermal variability in the future surface ocean, but how temperature dynamics will affect phytoplankton biology and biogeochemistry is largely unknown. Here, we examine the responses of the globally important marine coccolithophore Emiliania huxleyi to thermal variations at two frequencies (1 d and 2 d) at low (18.5 °C) and high (25.5 °C) mean temperatures. Elevated temperature and thermal variation decreased growth, calcification and physiological rates, both individually and interactively. The 1 d thermal variation frequencies were less inhibitory than 2 d variations under high temperatures, indicating that high-frequency thermal fluctuations may reduce heat-induced mortality and mitigate some impacts of extreme high-temperature events. Cellular elemental composition and calcification was significantly affected by both thermal variation treatments relative to each other and to the constant temperature controls. The negative effects of thermal variation on E. huxleyi growth rate and physiology are especially pronounced at high temperatures. These responses of the key marine calcifier E. huxleyi to warmer, more variable temperature regimes have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/782921
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1538525
    Schlagwort(e): Thermal Performance Curves ; Growth Rates ; Emiliania huxleyi ; Climate change ; Calcification ; Elemental quotas
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Gill Net Catch Data
    Beschreibung: Vertebrate caught with gill net in Sabine Lake, Galveston Bay, Matagorda Bay, San Antonio Bay, Aransas Bay, Corpus Christi Bay, Upper Laguna Madre, and Lower Laguna Madre from 1986 to 2018 (except in Sabine Lake sampling begun in 1986). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/828794
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1656923
    Schlagwort(e): Marine biodiversity ; Climate change ; Coastal ecosystems ; Fish diversity
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Synechococcus elongatus CCMP1629 in nitrate-limited and nutrient-replete cultures
    Beschreibung: The marine cyanobacterium Synechococcus elongatus clone CCMP1629 was grown in a continuous culture system on a 14:10 light-dark cycle under either nitrate-limited or nutrient-replete conditions, a photoperiod irradiance of either 50 or 300 micro-mol photons per square meter per second, partial pressures of either 400 or 1000 ppm CO2, and temperatures ranging from 20 to 45 degrees Celsius. Growth rates, photosynthetic rates, respiration rates, C:N ratios, C:Chlorophyll-a ratios, productivity indices, Fv/Fm ratios, and the initial slope and light-saturated asymptote of short-term photosynthesis-irradiance curves are reported. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/811093
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1536581
    Schlagwort(e): Climate change ; Phytoplankton ; Light ; Temperature ; CO2 partial pressure ; Acclimation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(2), (2020): 415-437, doi:10.1175/JPO-D-19-0019.1.
    Beschreibung: Results are presented from two dye release experiments conducted in the seasonal thermocline of the Sargasso Sea, one in a region of low horizontal strain rate (~10−6 s−1), the second in a region of intermediate horizontal strain rate (~10−5 s−1). Both experiments lasted ~6 days, covering spatial scales of 1–10 and 1–50 km for the low and intermediate strain rate regimes, respectively. Diapycnal diffusivities estimated from the two experiments were κz = (2–5) × 10−6 m2 s−1, while isopycnal diffusivities were κH = (0.2–3) m2 s−1, with the range in κH being less a reflection of site-to-site variability, and more due to uncertainties in the background strain rate acting on the patch combined with uncertain time dependence. The Site I (low strain) experiment exhibited minimal stretching, elongating to approximately 10 km over 6 days while maintaining a width of ~5 km, and with a notable vertical tilt in the meridional direction. By contrast, the Site II (intermediate strain) experiment exhibited significant stretching, elongating to more than 50 km in length and advecting more than 150 km while still maintaining a width of order 3–5 km. Early surveys from both experiments showed patchy distributions indicative of small-scale stirring at scales of order a few hundred meters. Later surveys show relatively smooth, coherent distributions with only occasional patchiness, suggestive of a diffusive rather than stirring process at the scales of the now larger patches. Together the two experiments provide important clues as to the rates and underlying processes driving diapycnal and isopycnal mixing at these scales.
    Beschreibung: Results are presented from two dye release experiments conducted in the seasonal thermocline of the Sargasso Sea, one in a region of low horizontal strain rate (~10−6 s−1), the second in a region of intermediate horizontal strain rate (~10−5 s−1). Both experiments lasted ~6 days, covering spatial scales of 1–10 and 1–50 km for the low and intermediate strain rate regimes, respectively. Diapycnal diffusivities estimated from the two experiments were κz = (2–5) × 10−6 m2 s−1, while isopycnal diffusivities were κH = (0.2–3) m2 s−1, with the range in κH being less a reflection of site-to-site variability, and more due to uncertainties in the background strain rate acting on the patch combined with uncertain time dependence. The Site I (low strain) experiment exhibited minimal stretching, elongating to approximately 10 km over 6 days while maintaining a width of ~5 km, and with a notable vertical tilt in the meridional direction. By contrast, the Site II (intermediate strain) experiment exhibited significant stretching, elongating to more than 50 km in length and advecting more than 150 km while still maintaining a width of order 3–5 km. Early surveys from both experiments showed patchy distributions indicative of small-scale stirring at scales of order a few hundred meters. Later surveys show relatively smooth, coherent distributions with only occasional patchiness, suggestive of a diffusive rather than stirring process at the scales of the now larger patches. Together the two experiments provide important clues as to the rates and underlying processes driving diapycnal and isopycnal mixing at these scales.
    Beschreibung: 2020-08-06
    Schlagwort(e): Ocean ; Atlantic Ocean ; Diapycnal mixing ; Diffusion ; Dispersion ; Mixing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(12), (2019): 3061-3068, doi: 10.1175/JPO-D-18-0172.1.
    Beschreibung: The calculation of energy flux in coastal trapped wave modes is reviewed in the context of tidal energy pathways near the coast. The significant barotropic pressures and currents associated with coastal trapped wave modes mean that large errors in estimating the wave flux are incurred if only the baroclinic component is considered. A specific example is given showing that baroclinic flux constitutes only 10% of the flux in a mode-1 wave for a reasonable choice of stratification and bathymetry. The interpretation of baroclinic energy flux and barotropic-to-baroclinic conversion at the coast is discussed: in contrast to the open ocean, estimates of baroclinic energy flux do not represent a wave energy flux; neither does conversion represent the scattering of energy from the tidal Kelvin wave to higher modes.
    Beschreibung: This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship, and by NSF under Grant OCE-1756781. I am grateful to K. Brink for the many useful conversations that contributed to this work and to J. Toole for providing detailed comments on an early version of this paper. The comments of three anonymous reviewers were very helpful in improving this paper.
    Beschreibung: 2020-06-03
    Schlagwort(e): Diapycnal mixing ; Internal waves ; Kelvin waves ; Topographic effects ; Waves, oceanic ; Tides
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...