ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Arctic
  • Internal waves
  • Sea level
  • American Geophysical Union  (5)
  • American Meteorological Society  (2)
  • Annual Reviews
  • Oxford University Press
  • 2020-2023  (7)
  • 1940-1944
  • 2020  (7)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 2020-2023  (7)
  • 1940-1944
Jahr
  • 1
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Little, C. M., Hu, A., Hughes, C. W., McCarthy, G. D., Piecuch, C. G., Ponte, R. M., & Thomas, M. D. The relationship between U.S. East Coast sea level and the Atlantic Meridional Overturning Circulation: a review. Journal of Geophysical Research-Oceans, 124(9), (2019): 6435-6458, doi:10.1029/2019JC015152.
    Beschreibung: Scientific and societal interest in the relationship between the Atlantic Meridional Overturning Circulation (AMOC) and U.S. East Coast sea level has intensified over the past decade, largely due to (1) projected, and potentially ongoing, enhancement of sea level rise associated with AMOC weakening and (2) the potential for observations of U.S. East Coast sea level to inform reconstructions of North Atlantic circulation and climate. These implications have inspired a wealth of model‐ and observation‐based analyses. Here, we review this research, finding consistent support in numerical models for an antiphase relationship between AMOC strength and dynamic sea level. However, simulations exhibit substantial along‐coast and intermodel differences in the amplitude of AMOC‐associated dynamic sea level variability. Observational analyses focusing on shorter (generally less than decadal) timescales show robust relationships between some components of the North Atlantic large‐scale circulation and coastal sea level variability, but the causal relationships between different observational metrics, AMOC, and sea level are often unclear. We highlight the importance of existing and future research seeking to understand relationships between AMOC and its component currents, the role of ageostrophic processes near the coast, and the interplay of local and remote forcing. Such research will help reconcile the results of different numerical simulations with each other and with observations, inform the physical origins of covariability, and reveal the sensitivity of scaling relationships to forcing, timescale, and model representation. This information will, in turn, provide a more complete characterization of uncertainty in relevant relationships, leading to more robust reconstructions and projections.
    Beschreibung: The authors acknowledge funding support from NSF Grant OCE‐1805029 (C. M. L.) and NASA Contract NNH16CT01C (C. M. L. and R. M. P.), the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy's Office of Biological & Environmental Research Cooperative Agreement DE‐FC02‐97ER62402 (A. H.), Natural Environment Research Council NE/K012789/1 (C. W. H.), Irish Marine Institute Project A4 PBA/CC/18/01 (G. D. M.), and NSF Awards OCE‐1558966 and OCE‐1834739 (C. G. P.). The National Center for Atmospheric Research is sponsored by National Science Foundation. The authors thank the two reviewers for their comments, and CLIVAR and the U.S. AMOC Science Team for inspiration and patience. All CMIP5 data used in Figures 4-6 are available at http://pcmdi9.llnl.gov/ website; the AMOC strength fields were digitized from Chen et al. (2018, supporting information Figure S3).
    Schlagwort(e): Sea level ; AMOC ; United States ; Coastal ; Climate model ; Review
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-10-26
    Beschreibung: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 58(3), (2020): e2019RG000672, doi:10.1029/2019RG000672.
    Beschreibung: Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea‐level observing system, the knowledge of regional sea‐level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea‐level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea‐level change. Here we review the individual processes which lead to sea‐level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea‐level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea‐level observation network—particularly as related to satellite observations—in the improved scientific understanding of the contributors to regional sea‐level change.
    Beschreibung: The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors acknowledge support from the National Aeronautics and Space Administration under Grants 80NSSC17K0565, 80NSSC170567, 80NSSC17K0566, 80NSSC17K0564, and NNX17AB27G. A. A. acknowledges support under GRACE/GRACEFO Science Team Grant (NNH15ZDA001N‐GRACE). T. W. acknowledges support by the National Aeronautics and Space Administration (NASA) under the New (Early Career) Investigator Program in Earth Science (Grant: 80NSSC18K0743). C. G. P was supported by the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists at the Woods Hole Oceanographic Institution.
    Schlagwort(e): Sea level ; Satellite observations ; Remote sensing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-10-26
    Beschreibung: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015377, doi:10.1029/2019JC015377.
    Beschreibung: Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a narrow shelf slope region in the South China Sea. The spatially continuous view of temperature fields provides a perspective of physical processes commonly available only in laboratory settings or numerical models, including internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, and observations of internal rundown (near‐bed, offshore‐directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf—whether transmitted into shallow waters or reflected back offshore—is mediated by local water column density structure and background currents set by the previous shoaling internal waves, highlighting the importance of wave‐wave interactions in nearshore internal wave dynamics.
    Beschreibung: We are grateful for the support of the Dongsha Atoll Research Station (DARS) and the Dongsha Atoll Marine National Park, whose efforts made this research possible. The authors would also like to thank A. Hall, S. Tyler, and J. Selker from the Center for Transformative Environmental Monitoring Programs (CTEMPs) funded by the National Science Foundation (EAR awards 1440596 and 1440506), G. Lohmann from WHOI, A. Safaie from UC Irvine, G. Wong, L. Hou, F. Shiah, and K. Lee from Academia Sinica for providing logistical and field support, as well as E. Pawlak, S. Lentz, B. Sanders, and S. Grant for equipment, and B. Raubenheimer, S. Elgar, R. Walter and D. Lucas for informative discussions that improved this work. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for this work supported by Academia Sinica and for K.D. and E.R. from NSF‐OCE 1753317 and for O.F., J.R., and R.A. from ONR Grant 1182789‐1‐TDZZM. A portion of this work (R.A.) was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE‐AC52‐07NA27344.
    Beschreibung: 2020-10-21
    Schlagwort(e): Internal waves ; Distributed temperature sensing ; Coral reef ; Internal wave reflection
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gehrels, W. R., Dangendorf, S., Barlow, N. L. M., Saher, M. H., Long, A. J., Woodworth, P. L., Piecuch, C. G., & Berk, K. A preindustrial sea-level rise hotspot along the Atlantic Coast of North America. Geophysical Research Letters, 47(4), (2020): e2019GL085814, doi:10.1029/2019GL085814.
    Beschreibung: The Atlantic coast of North America north of Cape Hatteras has been proposed as a “hotspot” of late 20th century sea‐level rise. Here we test, using salt‐marsh proxy sea‐level records, if this coast experienced enhanced sea‐level rise over earlier multidecadal‐centennial periods. While we find in agreement with previous studies that 20th century rates of sea‐level change were higher compared to rates during preceding centuries, rates of 18th century sea‐level rise were only slightly lower, suggesting that the “hotspot” is a reoccurring feature for at least three centuries. Proxy sea‐level records from North America (Iceland) are negatively (positively) correlated with centennial changes in the North Atlantic Oscillation. They are consistent with sea‐level “fingerprints” of Arctic ice melt, and we therefore hypothesize that sea‐level fluctuations are related to changes in Arctic land‐ice mass. Predictions of future sea‐level rise should take into account these long‐term fluctuating rates of natural sea‐level change.
    Beschreibung: This work is funded by the Natural Environment Research Council (grant NE/G003440/1). All radiocarbon dating was supported by the Natural Environment Research Council Radiocarbon Facility (allocations 1490.0810, 1566.0511, 1604.0112). Mark Wood assisted with fieldwork. Rob Scaife analyzed pollen data for core SN‐3.3. Sönke Dangendorf and Kevin Berk acknowledge the University of Siegen for their support within the PEPSEA project. Christopher Piecuch was supported by National Science Foundation awards OCE‐1558966 and OCE‐1834739. We thank project members Miguel Ángel Morales Maqueda, Chris Hughes, Vassil Roussenov and Ric Williams for valuable discussions. We are grateful to the International Space Science Institute (ISSI; Bern, Switzerland) for support of the International Team “Towards a unified Sea Level Record”. Data used in this paper are freely available online (https://www.doi.org/10/dgvq).
    Schlagwort(e): Sea level ; Late Holocene ; Common Era ; Climate ; Ocean
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(12), (2019): 3061-3068, doi: 10.1175/JPO-D-18-0172.1.
    Beschreibung: The calculation of energy flux in coastal trapped wave modes is reviewed in the context of tidal energy pathways near the coast. The significant barotropic pressures and currents associated with coastal trapped wave modes mean that large errors in estimating the wave flux are incurred if only the baroclinic component is considered. A specific example is given showing that baroclinic flux constitutes only 10% of the flux in a mode-1 wave for a reasonable choice of stratification and bathymetry. The interpretation of baroclinic energy flux and barotropic-to-baroclinic conversion at the coast is discussed: in contrast to the open ocean, estimates of baroclinic energy flux do not represent a wave energy flux; neither does conversion represent the scattering of energy from the tidal Kelvin wave to higher modes.
    Beschreibung: This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship, and by NSF under Grant OCE-1756781. I am grateful to K. Brink for the many useful conversations that contributed to this work and to J. Toole for providing detailed comments on an early version of this paper. The comments of three anonymous reviewers were very helpful in improving this paper.
    Beschreibung: 2020-06-03
    Schlagwort(e): Diapycnal mixing ; Internal waves ; Kelvin waves ; Topographic effects ; Waves, oceanic ; Tides
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carey, J. C., Abbott, B. W., & Rocha, A. V. Plant uptake offsets silica release from a large arctic tundra wildfire. Earth’s Future, 7(9), (2019): 1044-1057, doi:10.1029/2019EF001149.
    Beschreibung: Rapid climate change at high latitudes is projected to increase wildfire extent in tundra ecosystems by up to fivefold by the end of the century. Tundra wildfire could alter terrestrial silica (SiO2) cycling by restructuring surface vegetation and by deepening the seasonally thawed active layer. These changes could influence the availability of silica in terrestrial permafrost ecosystems and alter lateral exports to downstream marine waters, where silica is often a limiting nutrient. In this context, we investigated the effects of the largest Arctic tundra fire in recent times on plant and peat amorphous silica content and dissolved silica concentration in streams. Ten years after the fire, vegetation in burned areas had 73% more silica in aboveground biomass compared to adjacent, unburned areas. This increase in plant silica was attributable to significantly higher plant silica concentration in bryophytes and increased prevalence of silica‐rich gramminoids in burned areas. Tundra fire redistributed peat silica, with burned areas containing significantly higher amorphous silica concentrations in the O‐layer, but 29% less silica in peat overall due to shallower peat depth post burn. Despite these dramatic differences in terrestrial silica dynamics, dissolved silica concentration in tributaries draining burned catchments did not differ from unburned catchments, potentially due to the increased uptake by terrestrial vegetation. Together, these results suggest that tundra wildfire enhances terrestrial availability of silica via permafrost degradation and associated weathering, but that changes in lateral silica export may depend on vegetation uptake during the first decade of postwildfire succession.
    Beschreibung: This research was supported by NSF EAR PD Fellowship 1451527 to J. C. Carey, NSF grants 1065587 and 1026843 to the Marine Biological Laboratory, and NSF grant 1556772 to the University of Notre Dame. B. W. Abbott was supported by the Plant and Wildlife Department and College of Life Sciences at Brigham Young University. Data are available from the Dryad Digital Repository (doi:10.5061/dryad.79q74n7). We thank Ian Klupar for field assistance. R. Fulweber at the Toolik Field Station GIS & Remote Sensing Office performed watershed delineations and other spatial analysis. We thank the NSF Arctic LTER and the UAF Toolik Field Station for logistical support. We declare no conflicts of interest.
    Schlagwort(e): silica ; Arctic ; tundra ; wildfire ; vegetation ; permafrost
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(24), (2019): 8449-8463, doi: 10.1175/JCLI-D-19-0252.1.
    Beschreibung: A theory for the mean ice thickness and the Transpolar Drift in the Arctic Ocean is developed. Asymptotic expansions of the ice momentum and thickness equations are used to derive analytic expressions for the leading-order ice thickness and velocity fields subject to wind stress forcing and heat loss to the atmosphere. The theory is most appropriate for the eastern and central Arctic, but not for the region of the Beaufort Gyre subject to anticyclonic wind stress curl. The scale analysis reveals two distinct regimes: a thin ice regime in the eastern Arctic and a thick ice regime in the western Arctic. In the eastern Arctic, the ice drift is controlled by a balance between wind and ocean drag, while the ice thickness is controlled by heat loss to the atmosphere. In contrast, in the western Arctic, the ice thickness is determined by a balance between wind and internal ice stress, while the drift is indirectly controlled by heat loss to the atmosphere. The southward flow toward Fram Strait is forced by the across-wind gradient in ice thickness. The basic predictions for ice thickness, heat loss, ice volume, and ice export from the theory compare well with an idealized, coupled ocean–ice numerical model over a wide range of parameter space. The theory indicates that increasing atmospheric temperatures or wind speed result in a decrease in maximum ice thickness and ice volume. Increasing temperatures also result in a decrease in heat loss to the atmosphere and ice export through Fram Strait, while increasing winds drive increased heat loss and ice export.
    Beschreibung: MAS was supported by the National Science Foundation under Grant OPP-1822334. Comments and suggestions from Michael Steele, Gianluca Meneghello, and an anonymous reviewer helped to clarify the work.
    Beschreibung: 2020-05-15
    Schlagwort(e): Arctic ; Sea ice ; Ocean circulation
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...