ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.08. Volcanology  (7)
  • North Atlantic Ocean  (4)
  • Upwelling/downwelling
  • American Meteorological Society  (7)
  • Elsevier Science Publishers B.V.  (3)
  • Wiley Agu  (3)
  • Springer  (1)
  • Blackwell Publishing Ltd
  • Springer Nature
  • Springer Science + Business Media
  • 2020-2024
  • 2020-2023  (6)
  • 2020-2022  (8)
  • 2015-2019
  • 1960-1964
  • 2020  (14)
  • 2020  (14)
  • 2020  (14)
Collection
Publisher
Years
  • 2020-2024
  • 2020-2023  (6)
  • 2020-2022  (8)
  • 2015-2019
  • 1960-1964
Year
  • 1
    Publication Date: 2020-12-10
    Description: The persistent open-vent mild explosive activity of Stromboli volcano is episodically interrupted by more violent and dangerous explosive events (major explosions and paroxysms). According to the nature of erupted products, paroxysms can be related either to the explosion of overpressured gas pockets located in the proximity of the magma column or to the sudden uprise of hot, gas-rich magma from a deep part of the plumbing system. In both cases, these more energetic explosive events should be preceded by an escape or a preferential uprise of the highly mobile volatiles which, in turn, should produce gas leakage anomalies at the surface in sites of high vertical permeability, such as deep-reaching faults. In order to identify such gas leaking sites, a systematic CO2 soil flux survey has been carried out on the island using an accumulation chamber. Four hundred sixty-one points have been measured with a high density in the summit crater area, where high flux values have been found (10−3–10−2 cm/s). Anomalous points are concentrated along the main NE–SW axial feeding system of the volcano. CO2 soil flux decreases from the crater zone to the base of the volcanic cone, where, however, an interesting gas leakage anomaly occurs (Pizzillo mofette). In the Pizzillo area thermal water wells also occur, whose chemistry indicates an origin by sea water heated by hot gas. Soil gases have been sampled in the sites with the highest CO2 flux in the crater area and at the base of the cone. Chemical and isotopic analyses indicate the presence of a deep gas component especially in the crater zone samples (high CO2, appreciable contents of He and H2, 3He/4He values up to 3.55, δ13C of CO2=−2 ‰). The SC5 low-flux fumarole on the crater rim has shown, during six years, a remarkable persistence of temperature (93–95°C), with only minor fluctuations of chemistry. Appearance of anomalous peaks of H2 in correspondence with strombolian explosions was observed during a 2-h 30-min experiment of continuous recording of hydrogen content of the fumarole. Together with previous data on H2O, CO2 and He, this experiment confirms that strombolian blasts produce rapid fluctuations in the fumarolic gas composition. In the light of this study, SC5 fumarole and Pizzillo mofette look promising sites for the testing of a continuous geochemical monitoring system of Stromboli volcano.
    Description: Gruppo Nazionale per la Vulcanologia CEC project “Pre-eruptive processes: Modelling and Parameterization”, contract no. ENV4-CT96-0259 (DG12–ESCY)
    Description: Published
    Description: 226-245
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: fluid geochemistry, soil CO2 flux, Stromboli ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-16
    Description: The temporal evolution of effusion rate is the main controlling factor of lava spreading and emplacement conditions. Therefore, it represents the most relevant parameter for characterizing the dynamics of effusive eruptions and thus for assessing the volcanic hazard associated with this type of volcanism. Since the effusion rate curves can provide important insights into the properties of the magma feeding system, several efforts have been performed for their classification and interpretation. Here, a recently published numerical model is employed for studying the effects of magma source and feeding dike properties on the main characteristics (e.g., duration, erupted mass, and effusion rate trend) of small‐volume effusive eruptions, in the absence of syn‐eruptive magma injection from deeper storages. We show that the total erupted mass is mainly controlled by magma reservoir conditions (i.e., dimensions and overpressure) prior to the eruption, whereas conduit processes along with reservoir properties can significantly affect mean effusion rate, and thus, they dramatically influence eruption duration. Simulations reproduce a wide variety of effusion rate trends, whose occurrence is controlled by the complex competition between conduit enlargement and overpressure decrease due to magma withdrawal. These effusion rate curves were classified in four groups, which were associated with the different types described in the literature. Results agree with the traditional explanation of effusion rate curves and provide new insights for interpreting them, highlighting the importance of magma reservoir size, initial overpressure, and initial width of the feeding dike in controlling the nature of the resulting effusion rate curve.
    Description: Published
    Description: e2019JB01930
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: effusive eruption ; basaltic eruptions ; numerical modeling ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-16
    Description: Kinetic energy models, also called kinetic models, are simple tools able to provide a fast estimate of the inundation area of pyroclastic density currents (PDCs). They are based on the calculation of the PDC front kinetic energy as a function of the distance from a source point. On a three‐dimensional topography, the PDC runout distance is estimated by comparing the flow kinetic energy with the potential energy associated with the topographic obstacles encountered by the PDC. Since kinetic models do not consider the occurrence of channelization processes, the modeled inundation areas can be significantly different from those observed in real deposits. To address this point, we present a new strategy that allows improving kinetic models by considering flow channelization processes, and consists in the inclusion of secondary source points in the expected channelization zones, adopting a tree branch‐like structure. This strategy is based on the redistribution of a key physical variable, such as the flow energy or mass depending on the considered kinetic model, and requires the adoption of appropriate equations for setting the characteristics of the secondary sources. Two models were modified by applying this strategy: the energy cone and the box model. We tested these branching models by comparing their results with those derived from their traditional formulations and from a two‐dimensional depth‐averaged model, considering two specific volcanoes (Chaitén and Citlaltépetl). Thereby, we show the capability of this strategy of improving the accuracy of kinetic models and considering flow channelization processes without including additional, unconstrained input parameters.
    Description: Published
    Description: e2019JB019271
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Pyroclastic Density Currents ; Numerical Modeling ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-14
    Description: The volcano Chichontepeque (San Vicente) is one of the nine recent volcanoes making up the El Salvador sector of the WNW-ESE-trending active Central American volcanic belt. Thermal activity is at present reduced to a few thermal springs and fumaroles. The most important manifestations (Agua Agria and Los Infernillos Ciegos) are boiling springs and fumaroles located on the northern slope of the volcano (850 m a.s.l.) along two radial faults. The chloride acid waters of the Los Infernillos area are partly fed by a deep hydrothermal aquifer (crossed at 1100–1300 m by a geothermal exploration well), which finds a preferential path to the surface through the radial fault system. C02 is the most important gas (〉90%) of the Los Infernillos Ciegos and Agua Agria fumaroles. Part of the Los Infernillos gases may also come from a deeper, hotter source, given their high HCl/Stot. ratio and their more reducing conditions. The application of geothermometric and geobarometric methods to the gases and thermal waters suggests that both thermal areas are linked to the identified 1100–1300 m reservoir, whose temperature (250°C), lateral extension and chemical composition, as resulting from this study, are of interest for industrial development.
    Description: Salvadorian State Agency for Electric Power (CEL)
    Description: Published
    Description: 83-97
    Description: 1TR. Georisorse
    Description: JCR Journal
    Keywords: geochemistry, thermal springs, fumaroles, San Vicente, El Salvador ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-12
    Description: Slope dynamics in volcanic environments comprise a wide spectrum of phenomena, from large lateral collapse to shallow debris remobilization, which may represent a major threat for human communities and infrastructures. Many volcanos built up from the ocean floor and large portions of the volcano edifice are submerged. In these settings, only the edifice’s summit can be investigated by terrestrial remote sensing and in-situ approaches. Growth and destruction, including tectonics and gravitational phenomena, affect entire volcano flanks and are not limited to the physical boundary of the sea level but could comprise their subaqueous parts.
    Description: Published
    Description: 2615–2618
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: volcanoes ; flanks ; volcano-tectonics ; structure ; collapse ; stability ; 04.08. Volcanology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-10
    Description: All the actions carried out in 1992 to protect the village of Zafferana Etnea from being invaded by lava are described. An earthen barrier 234 m long and 21 m high was firstly built in January 1992 by accumulating with mechanical escavators 370,000 m3 of earth, scoriae and stones. This embankment contained the lava for about one month and was overflowed by April 9, 1992. Three additional smaller earthen barriers (lenght: 90–160 m; height: 6–12 m) were built in April to gain time while the lava front was descending towards Zafferana from the overflowed first embankment. The major effort of the 1992 operation consisted of several attempts at stopping the lava front advance by diverting the flow out from the natural and extensively tunnelled channel through a skylight near the vent. The main intervention point was located in Valle del Bove at an elevation of 2000 m, at 8 km from Zafferana, in a zone almost unaccessible from land: helicopters were hence extensively used during the whole operation. Initial interventions called for attempts at plugging a tunnel by dumping into it linked concrete blocks, hedgehogs and blasted portions of the solid levee. Each intervention caused the partial obstruction of the tunnelled channel, which determined major increases of lava overflow in Valle del Bove and the consequent halt of the most advanced fronts. However, benefits were of brief duration, at the most two weeks of respite, before new lava fronts approached again and again the outskirts of Zafferana. The final successful intervention was carried out on May 27–29. An artificial channel was dug departing from the natural one. The solid separation levee was thinned to 3 m and blasted by 7000 kg of explosives. After the explosion, of the lava flowed spontaneously in the artificial channel and then the total diversion was obtained, the tunnel being plugged by dumping into the natural flow 230 m3 of lava boulders. As a consequence of the intervention the active natural lava front, that on May 27 was only 850 m from Zafferana, came to an halt, as did the entire flow downhill from the diversion point, bringing back the situation as it was five months earlier, a few days after the beginning of the eruption, with the new front of the diverted flow at 6–7 km from Zafferana. In June 1992, the effusion rate halved from 30 to 15 m3/s and with this reduced thrust the lava was no longer capable of covering long distances. Five months after the conclusive intervention, the diverted lava continues to flow over its initial natural field but remaining confined in the upper Valle del Bove, without any new threat to Zafferana.
    Description: Published
    Description: 1-34
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Etna volcano, eruption, lava flows, hazard, ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-16
    Description: Numerical modeling of tephra dispersal and deposition is essential for evaluation of volcanic hazards. Many models consider reasonable physical approximations in order to reduce computational times, but this may introduce a certain degree of uncertainty in the simulation outputs. The important step of uncertainty quantification is dealt in this paper with respect to a coupled version of a plume model (PLUME‐MoM) and a tephra dispersal model (HYSPLIT). The performances of this model are evaluated through simulations of four past eruptions of different magnitudes and styles from three Andean volcanoes, and the uncertainty is quantified by evaluating the differences between modeled and observed data of plume height (at different time steps above the vent) as well as mass loading and grain size at given stratigraphic sections. Different meteorological data sets were also tested and had a sensible influence on the model outputs. Other results highlight that the model tends to underestimate plume heights while overestimating mass loading values, especially for higher‐magnitude eruptions. Moreover, the advective part of HYSPLIT seems to work more efficiently than the diffusive part. Finally, though the coupled PLUME‐MoM/HYSPLIT model generally is less efficient in reproducing deposit grain sizes, we propose that it may be used for hazard map production for higher‐magnitude eruptions (sub‐Plinian or Plinian) for what concern mass loading.
    Description: This research was financed by the French government IDEX‐ISITE initiative 16‐IDEX‐0001 (CAP 20‐25), the Institute de Recherche pour le Développement (IRD) in the context of the Laboratoire Mixte International “Séismes et Volcans dans les Andes du Nord” (SVAN), and the Centre National de la Recherche Scientifique (CNRS) Tellus programme.
    Description: Published
    Description: e2019JB018390
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Tephra deposit ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2020-03-16
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(4), (2020): 1535-1545, doi:10.1175/JCLI-D-19-0547.1.
    Description: In a transient warming scenario, the North Atlantic is influenced by a complex pattern of surface buoyancy flux changes that ultimately weaken the Atlantic meridional overturning circulation (AMOC). Here we study the AMOC response in the CMIP5 experiment, using the near-geostrophic balance of the AMOC on interannual time scales to identify the role of temperature and salinity changes in altering the circulation. The thermal wind relationship is used to quantify changes in the zonal density gradients that control the strength of the flow. At 40°N, where the overturning cell is at its strongest, weakening of the AMOC is largely driven by warming between 1000- and 2000-m depth along the western margin. Despite significant subpolar surface freshening, salinity changes are small in the deep branch of the circulation. This is likely due to the influence of anomalously salty water in the subpolar intermediate layers, which is carried northward from the subtropics in the upper limb of the AMOC. In the upper 1000 m at 40°N, salty anomalies due to increased evaporation largely cancel the buoyancy increase due to warming. Therefore, in CMIP5, temperature dynamics are responsible for AMOC weakening, while freshwater forcing instead acts to strengthen the circulation in the net. These results indicate that past modeling studies of AMOC weakening, which rely on freshwater hosing in the subpolar gyre, may not be directly applicable to a more complex warming scenario.
    Description: We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. We also thank John Marshall for helpful discussions on the driving mechanisms of the AMOC, and three anonymous reviewers whose comments greatly improved the manuscript. This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program Award 80NSSC17K0372, and by National Science Foundation Award OCE-1433132.
    Description: 2020-07-20
    Keywords: North Atlantic Ocean ; Thermohaline circulation ; Water masses/storage ; Climate change ; Climate prediction ; Climate models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kwon, Y., Seo, H., Ummenhofer, C. C., & Joyce, T. M. Impact of multidecadal variability in Atlantic SST on winter atmospheric blocking. Journal of Climate, 33(3), (2020): 867-892, doi: 10.1175/JCLI-D-19-0324.1.
    Description: Recent studies have suggested that coherent multidecadal variability exists between North Atlantic atmospheric blocking frequency and the Atlantic multidecadal variability (AMV). However, the role of AMV in modulating blocking variability on multidecadal times scales is not fully understood. This study examines this issue primarily using the NOAA Twentieth Century Reanalysis for 1901–2010. The second mode of the empirical orthogonal function for winter (December–March) atmospheric blocking variability in the North Atlantic exhibits oppositely signed anomalies of blocking frequency over Greenland and the Azores. Furthermore, its principal component time series shows a dominant multidecadal variability lagging AMV by several years. Composite analyses show that this lag is due to the slow evolution of the AMV sea surface temperature (SST) anomalies, which is likely driven by the ocean circulation. Following the warm phase of AMV, the warm SST anomalies emerge in the western subpolar gyre over 3–7 years. The ocean–atmosphere interaction over these 3–7-yr periods is characterized by the damping of the warm SST anomalies by the surface heat flux anomalies, which in turn reduce the overall meridional gradient of the air temperature and thus weaken the meridional transient eddy heat flux in the lower troposphere. The anomalous transient eddy forcing then shifts the eddy-driven jet equatorward, resulting in enhanced Rossby wave breaking and blocking on the northern flank of the jet over Greenland. The opposite is true with the AMV cold phases but with much shorter lags, as the evolution of SST anomalies differs in the warm and cold phases.
    Description: We gratefully acknowledge support from the NSF Climate and Large-scale Dynamics Program (AGS-1355339) to Y-OK, HS, CCU, and TMJ, the NASA Physical Oceanography Program (NNX13AM59G) to Y-OK, HS, and TMJ, NOAA CPO Climate Variability and Predictability Program (NA13OAR4310139) and DOE CESD Regional and Global Model Analysis Program (DE-SC0019492) to Y-OK, and NSF Physical Oceanography Program (OCE-1419235) to HS. We are very grateful to the three anonymous reviewers and editor Dr. Mingfang Ting, for their thorough and insightful suggestions. The NOAA 20CR dataset was downloaded from the NOAA Earth System Research Laboratory Physical Science Division webpage (https://www.esrl.noaa.gov/psd/data/20thC_Rean/). Support for the 20CR Project version 2c dataset is provided by the U.S. Department of Energy, Office of Science Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration Climate Program Office. The HadISST dataset was downloaded from the U.K. Met Office Hadley Centre webpage (https://www.metoffice.gov.uk/hadobs/hadisst/). The ERA-20C dataset was downloaded from the ECMWF webpage (https://apps.ecmwf.int/datasets/data/era20c-daily/). The ERSST5 dataset was provided by the NOAA Earth System Research Laboratory Physical Science Division (https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html).
    Keywords: North Atlantic Ocean ; Atmosphere-ocean interaction ; Blocking ; Climate variability ; Multidecadal variability ; North Atlantic Oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 887-905, doi:10.1175/JPO-D-19-0110.1.
    Description: The Equatorial Undercurrent (EUC) encounters the Galápagos Archipelago on the equator as it flows eastward across the Pacific. The impact of the Galápagos Archipelago on the EUC in the eastern equatorial Pacific remains largely unknown. In this study, the path of the EUC as it reaches the Galápagos Archipelago is measured directly using high-resolution observations obtained by autonomous underwater gliders. Gliders were deployed along three lines that define a closed region with the Galápagos Archipelago as the eastern boundary and 93°W from 2°S to 2°N as the western boundary. Twelve transects were simultaneously occupied along the three lines during 52 days in April–May 2016. Analysis of individual glider transects and average sections along each line show that the EUC splits around the Galápagos Archipelago. Velocity normal to the transects is used to estimate net horizontal volume transport into the volume. Downward integration of the net horizontal transport profile provides an estimate of the time- and areal-averaged vertical velocity profile over the 52-day time period. Local maxima in vertical velocity occur at depths of 25 and 280 m with magnitudes of (1.7 ± 0.6) × 10−5 m s−1 and (8.0 ± 1.6) × 10−5 m s−1, respectively. Volume transport as a function of salinity indicates that water crossing 93°W south (north) of 0.4°S tends to flow around the south (north) side of the Galápagos Archipelago. Comparisons are made between previous observational and modeling studies with differences attributed to effects of the strong 2015/16 El Niño event, the annual cycle of local winds, and varying longitudes between studies of the equatorial Pacific.
    Description: This work was supported by National Science Foundation (Grants OCE-1232971 and OCE-1233282) and the NASA Earth and Space Science Fellowship Program (Grant 80NSSC17K0443).
    Keywords: Tropics ; Boundary currents ; Topographic effects ; Transport ; Upwelling/downwelling ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...