ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (13)
  • 04.08. Volcanology  (9)
  • Topographic effects  (4)
  • MDPI  (5)
  • American Meteorological Society  (4)
  • INGV  (2)
  • IStituto Nazionale di Geofisica e Vulcanologia  (1)
  • Springer  (1)
  • Blackwell Publishing Ltd
  • Springer Nature
  • Springer Science + Business Media
  • 2020-2024
  • 2020-2023  (4)
  • 2020-2022  (9)
  • 2015-2019
  • 1960-1964
  • 1935-1939
  • 2020  (13)
  • 2020  (13)
  • 2020  (13)
Sammlung
  • Artikel  (13)
Datenquelle
Verlag/Herausgeber
Erscheinungszeitraum
  • 2020-2024
  • 2020-2023  (4)
  • 2020-2022  (9)
  • 2015-2019
  • 1960-1964
  • +
Jahr
  • 1
    Publikationsdatum: 2020-11-25
    Beschreibung: Recent volcanic gas compilations have urged the need to expand in-situ plume measurements to poorly studied, remote volcanic regions. Despite being recognized as one of the main volcanic epicenters on the planet, the Vanuatu arc remains poorly characterized for its subaerial emissions and their chemical imprints. Here, we report on the first plume chemistry data for Mount Garet, on the island of Gaua, one of the few persistent volatile emitters along the Vanuatu arc. Data were collected with a multi-component gas analyzer system (multi-GAS) during a field campaign in December 2018. The average volcanic gas chemistry is characterized by mean molar CO2/SO2, H2O/SO2, H2S/SO2 and H2/SO2 ratios of 0.87, 47.2, 0.13 and 0.01, respectively. Molar proportions in the gas plume are estimated at 95.9 11.6, 1.8 0.5, 2.0 0.01, 0.26 0.02 and 0.06 0.01, for H2O, CO2, SO2, H2S and H2. Using the satellite-based 10-year (2005–2015) averaged SO2 flux of ~434 t d􀀀1 for Mt. Garet, we estimate a total volatile output of about 6482 t d􀀀1 (CO2 ~259 t d􀀀1; H2O ~5758 t d􀀀1; H2S ~30 t d􀀀1; H2 ~0.5 t d􀀀1). This may be representative of a quiescent, yet persistent degassing period at Mt. Garet; whilst, as indicated by SO2 flux reports for the 2009–2010 unrest, emissions can be much higher during eruptive episodes. Our estimated emission rates and gas composition for Mount Garet provide insightful information on volcanic gas signatures in the northernmost part of the Vanuatu Arc Segment. The apparent CO2-poor signature of high-temperature plume degassing at Mount Garet raises questions on the nature of sediments being subducted in this region of the arc and the possible role of the slab as the source of subaerial CO2. In order to better address the dynamics of along-arc volatile recycling, more volcanic gas surveys are needed focusing on northern Vanuatu volcanoes.
    Beschreibung: This research was conducted as part of the Trail by Fire II—Closing the Ring Project (PI: Y. Moussallam) funded by the National Geographic Society (grant number CP-122R-17), the Rolex Awards for Enterprise and the French national Research Institute for Development (IRD). J.L. also acknowledges travel funding support from Ministero dell’istruzione, dell’università e della ricerca (MIUR;) under grant n. PRIN2017-2017LMNLAW).
    Beschreibung: Published
    Beschreibung: id 7293
    Beschreibung: 4V. Processi pre-eruttivi
    Beschreibung: JCR Journal
    Schlagwort(e): Vanuatu ; Gaua ; Mount Garet ; Multi-GAS ; volcanic gas composition ; volatile fluxes ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-12-10
    Beschreibung: Tor Caldara natural reserve hosts the southernmost discharge of endogenous gas of Colli Albani volcano (mostly CO2 with a relevant H2S content up to 6.3 vol.%). Gas discharges in zones where past sulfur mining removed the impervious surficial cover (e.g. Miniera Grande and Miniera Piccola) and along tectonic fissures. A structural study of the reserve has shown the presence of two zones with different characteristics: prevailing directions NS and N30° in the northern zone; EW and N60° in the southern one. In MarchJuly 2012 a geochemical study was carried out, including a soil CO2 flux survey and continuous monitoring (from 2 to 11 days) of air concentration of CO2 and H2S in 12 sites of the reserve. Environmental parameters were also monitored. Total diffuse soil flux of endogenous CO2 was estimated to 17.48 ton*day1 from 1,259 measurements over a 0.47 km2 surface, with 6.56 ton*day1 only from Miniera Grande. This is the second highest value of soil CO2 flux at Miniera Grande, after that of 2005 (9.25 ton*day1) and is significantly higher than in 2009 (1.20 ton*day1). As both the 2005 and 2012 surveys were made shortly after earthquakes with epicentres near to Tor Caldara (max ML= 4.7 in 2005 and 3.5 in 2012), data confirm that soil CO2 flux increases during earthquakes because of seismic rock microfracturing and soil shaking. Hazardous air concentrations have been found only for H2S, up to immediately lethal values (5651,124 ppm) and with potentially lethal values (≥ 250 ppm) long persisting (up to 12h27’) in several no wind nights. Instead, the CO2 air concentration remained always well below dangerous levels (maximum recorded value = 2.1 vol.%). The most hazardous gas releasing sites were found in Miniera Grande and in a small pond NE of Miniera Piccola, where the carcasses of mammals and other small animals are frequently found. The killer gas is H2S, and the dangerous sites should be appropriately fenced to prevent access to people and animals.
    Beschreibung: Regione Lazio Civil Protection Department
    Beschreibung: Published
    Beschreibung: 1-48
    Beschreibung: 6A. Geochimica per l'ambiente e geologia medica
    Beschreibung: JCR Journal
    Schlagwort(e): Tor Caldara gas hazard assessment; Soil CO2 flux; CO2 and H2S air concentration monitoring ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-09-16
    Beschreibung: Between 28 March and 1 April 2020, Stromboli volcano erupted, with overflows from the NE crater rim spreading along the barren Sciara del Fuoco slope and reaching the sea along the NW coast of the island. Poor weather conditions did not allow a detailed observation of the crater zone through the cameras monitoring network, but a clear view of the lower slope and the flows expanding in the area allowed us to characterize the flow features. This evidence was integrated with satellite, GBInSAR, and seismic data, thus enabling a reconstruction of the whole volcanic event, which involved several small collapses of the summit cone and the generation of pyroclastic density currents (PDCs) spreading along the slope and on the sea surface. Satellite monitoring allowed for the mapping of the lava flow field and the quantification of the erupted volume, and GBInSAR continuous measurements detected the crater widening and the deflation of the summit cone caused by the last overflow. The characterization of the seismicity made it possible to identify the signals that are associated with the propagation of PDCs along the volcano flank and, for the first time, to recognize the signal that is produced by the impact of the PDCs on the coast.
    Beschreibung: This work has been financially supported by the “Presidenza del Consiglio dei Ministri—Dipartimento della Protezione Civile” (Presidency of the Council of Ministers–Department of Civil Protection) (DPC-UNIFI Agreement 2019–2021; Scientific Responsibility: N.C.); this publication, however, does not necessarily reflect the position and the official policies of the Department. Additional funds for paper publication have been provided by INGV-OE.
    Beschreibung: Published
    Beschreibung: 3010
    Beschreibung: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Beschreibung: JCR Journal
    Schlagwort(e): Stromboli ; Volcanic hazard ; Volcanic hazard assessment ; Multidisciplinary data integration ; Stromboli Volcano monitoring ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-10-16
    Beschreibung: Accurate tracking and forecasting of ash dispersal in the atmosphere and quantification of its uncertainty are of fundamental importance for volcanic risk mitigation. Numerical models and satellite sensors offer two complementary ways to monitor ash clouds in real time, but limits and uncertainties affect both techniques. Numerical forecasts of volcanic clouds can be improved by assimilating satellite observations of atmospheric ash mass load. In this paper, we present a data assimilation procedure aimed at improving the monitoring and forecasting of volcanic ash clouds produced by explosive eruptions. In particular, we applied the Local Ensemble Transform Kalman Filter (LETKF) to the results of the Volcanic Ash Transport and Dispersion model HYSPLIT. To properly simulate the release and atmospheric transport of volcanic ash particles, HYSPLIT has been initialized with the results of the eruptive column model PLUME-MoM. The assimilation procedure has been tested against SEVIRI measurements of the volcanic cloud produced during the explosive eruption occurred at Mt. Etna on 24 December 2018. The results show how the assimilation procedure significantly improves the representation of the current ash dispersal and its forecast. In addition, the numerical tests show that the use of the sequential Ensemble Kalman Filter does not require a precise initialization of the numerical model, being able to improve the forecasts as the assimilation cycles are performed.
    Beschreibung: Published
    Beschreibung: id 359
    Beschreibung: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Beschreibung: JCR Journal
    Schlagwort(e): data assimilatio ; volcanic eruption ; tephra dispersal ; numerical modeling ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-11-12
    Beschreibung: Slope dynamics in volcanic environments comprise a wide spectrum of phenomena, from large lateral collapse to shallow debris remobilization, which may represent a major threat for human communities and infrastructures. Many volcanos built up from the ocean floor and large portions of the volcano edifice are submerged. In these settings, only the edifice’s summit can be investigated by terrestrial remote sensing and in-situ approaches. Growth and destruction, including tectonics and gravitational phenomena, affect entire volcano flanks and are not limited to the physical boundary of the sea level but could comprise their subaqueous parts.
    Beschreibung: Published
    Beschreibung: 2615–2618
    Beschreibung: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Beschreibung: JCR Journal
    Schlagwort(e): volcanoes ; flanks ; volcano-tectonics ; structure ; collapse ; stability ; 04.08. Volcanology ; 05.08. Risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-12-03
    Beschreibung: Volcanic plume height is a key parameter in retrieving plume ascent and dispersal dynamics, as well as eruption intensity; all of which are crucial for assessing hazards to aircraft operations. One way to retrieve cloud height is the shadow technique. This uses shadows cast on the ground and the sun geometry to calculate cloud height. This technique has, however, not been frequently used, especially not with high-spatial resolution (30 m pixel) satellite data. On 26 October 2013, Mt Etna (Sicily, Italy) produced a lava fountain feeding an ash plume that drifted SW and through the approach routes to Catania international airport. We compared the proximal plume height time-series obtained from fixed monitoring cameras with data retrieved from a Landsat-8 Operational Land Imager image, with results being in good agreement. The application of the shadow technique to a single high-spatial resolution image allowed us to fully document the ascent and dispersion history of the plume–cloud system. We managed to do this over a distance of 60 km and a time period of 50 min, with a precision of a few seconds and vertical error on plume altitude of ±200 m. We converted height with distance to height with time using the plume dispersion velocity, defining a bent-over plume that settled to a neutral buoyancy level with distance. Potentially, the shadow technique defined here allows downwind plume height profiles and mass discharge rate time series to be built over distances of up to 260 km and periods of 24 h, depending on vent location in the image, wind speed, and direction.
    Beschreibung: This research was funded by CNES-TOSCA (Terre Solide), grant number 10 3703 “Integration of sample return data and remote sensing for advanced understanding of volcanic ash formation and dispersion” (PI: Lucia Gurioli).
    Beschreibung: Published
    Beschreibung: id 3951
    Beschreibung: 5V. Processi eruttivi e post-eruttivi
    Beschreibung: JCR Journal
    Schlagwort(e): Mt Etna ; Paroxysmal explosive activity ; Ash plume extension ; Satellite imaging ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2020-06-17
    Beschreibung: Satellite‐based surveillance of volcanic hot spots and plumes can be coupled with modeling to allow ensemble‐based approaches to crisis response. We complete benchmark tests on an effusive crisis response protocol aimed at delivering product for use in tracking lava flows. The response involves integration of four models: MIROVA for discharge rate (TADR), the ASTER urgent response protocol for delivery of high‐spatial resolution satellite data, DOWNFLOW for flow path projections, and PyFLOWGO for flow run‐out. We test the protocol using the data feed available during Piton de la Fournaise’s April–May 2018 eruption, with product being delivered to the Observatoire du Piton de la Fournaise via Google Drive. The response was initialized by an alert at 19:50Z on 27 April 2018. Initially DOWNFLOW‐FLOWGO were run using TADRs typical of Piton de la Fournaise, and revealed that flow at 〉120 m 3 /s could reach the island belt road. The first TADR (10– 20 m 3 /s) was available at 09:55Z on 28 April, and gave flow run‐outs of 1180–2510 m. The latency between satellite overpass and TADR provision was 105 minutes, with the model result being posted 15 minutes later. An InSAR image pair was completed six hours after the eruption began, and gave a flow length of 1.8 km; validating the run‐out projection. Thereafter, run‐outs were updated with each new TADR, and checked against flow lengths reported from InSAR and ASTER mapping. In all, 35 TADRs and 15 InSAR image pairs were processed during the 35‐day‐long eruption, and 11 ASTER images were delivered.
    Beschreibung: Published
    Beschreibung: VO230
    Beschreibung: 5V. Processi eruttivi e post-eruttivi
    Beschreibung: JCR Journal
    Schlagwort(e): 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2020-03-03
    Beschreibung: In this study we applied petrochemical methods (SEM-EDS; FT-IR) in order to characterize a group of obsidian flakes collected at Ustica island (Sicily). Despite the absence of obsidian geological outcrops, a lot of obsidian fragments still emerging from the lands of Ustica testify that the island was a major import center of obsidian during the prehistory. On this island, there are some prehistoric settlements, dated from the Neolithic to the Middle Bronze Age (6000- 1200 BC), in which the use of obsidian continued until the beginning of metals age. Our study includes: i) Macroscopic and microscopic optical observations, which allowed selecting 18 obsidian flakes (starting from 50 obsidian flakes) on the base of their morphological characteristics. ii) Density measurements (hydrostatic balance). iii) Scanning electron microscope determination (SEM-EDS) of major elements of the obsidian glasses and minerals. Results of our analyses were compared with 12 geological samples collected in obsidian sources from Monte Arci (Sardinia), Palmarola, Lipari and Pantelleria, i.e. the four most exploited obsidian sources of the ancient world in the Western-Central Mediterranean. This study confirms the presence of the Lipari and Pantelleria sources (Sicily) in our obsidian set. iv) We also determined (by FT-IR) the hydration degree of some obsidian flakes in order to detect a possible hydration gradient between the rim and the core of the flake sample. The width of the hydration rim, if any, can be used for an approximate evaluation of the age of the tool.
    Beschreibung: Published
    Beschreibung: VO13
    Beschreibung: 2V. Struttura e sistema di alimentazione dei vulcani
    Beschreibung: JCR Journal
    Schlagwort(e): Obsidian, Petrographic study, FT-IR, Mediterranean obsidians, Ustica Island. ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2020-03-12
    Beschreibung: The Etna flank eruption that started on 24 December 2018 lasted a few days and involved the opening of an eruptive fissure, accompanied by a seismic swarm and shallow earthquakes, significant SO2 flux release, and by large and widespread ground deformation, especially on the eastern flank of the volcano. Lava fountains and ash plumes from the uppermost eruptive fissure accompanied the opening stage, causing disruption to Catania International Airport, and were followed by a quiet lava effusion within the barren Valle del Bove depression until 27 December. This was the first flank eruption to occur at Etna in the last decade, during which eruptive activity was confined to the summit craters and resulted in lava fountains and lava flow output from the crater rims. In this paper, we used ground and satellite remote sensing techniques to describe the sequence of events, quantify the erupted volumes of lava, gas, and tephra, and assess volcanic hazards.
    Beschreibung: Published
    Beschreibung: id 905
    Beschreibung: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Beschreibung: JCR Journal
    Schlagwort(e): Etna volcano ; satellite monitoring ; remote sensing ; hazard assessment ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Hahn, L. C., Storelvmo, T., Hofer, S., Parfitt, R., & Ummenhofer, C. C. Importance of Orography for Greenland cloud and melt response to atmospheric blocking. Journal of Climate, 33(10), (2020): 4187-4206, doi:10.1175/JCLI-D-19-0527.1.
    Beschreibung: More frequent high pressure conditions associated with atmospheric blocking episodes over Greenland in recent decades have been suggested to enhance melt through large-scale subsidence and cloud dissipation, which allows more solar radiation to reach the ice sheet surface. Here we investigate mechanisms linking high pressure circulation anomalies to Greenland cloud changes and resulting cloud radiative effects, with a focus on the previously neglected role of topography. Using reanalysis and satellite data in addition to a regional climate model, we show that anticyclonic circulation anomalies over Greenland during recent extreme blocking summers produce cloud changes dependent on orographic lift and descent. The resulting increased cloud cover over northern Greenland promotes surface longwave warming, while reduced cloud cover in southern and marginal Greenland favors surface shortwave warming. Comparison with an idealized model simulation with flattened topography reveals that orographic effects were necessary to produce area-averaged decreasing cloud cover since the mid-1990s and the extreme melt observed in the summer of 2012. This demonstrates a key role for Greenland topography in mediating the cloud and melt response to large-scale circulation variability. These results suggest that future melt will depend on the pattern of circulation anomalies as well as the shape of the Greenland Ice Sheet.
    Beschreibung: This research was supported by the Woods Hole Oceanographic Institution Summer Student Fellow program, by the U.S. National Science Foundation under AGS-1355339 to C.C.U., and by the European Research Council through Grant 758005.
    Schlagwort(e): Ice sheets ; Blocking ; Cloud cover ; Topographic effects ; Climate change ; Climate variability
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...