ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Conduit dynamics  (1)
  • Ctenostomata  (1)
  • Springer  (2)
  • American Institute of Physics (AIP)
  • BioMed Central
  • 2015-2019  (2)
  • 2005-2009
  • 1980-1984
  • 1965-1969
  • 1945-1949
  • 1935-1939
  • 2019  (2)
Sammlung
Verlag/Herausgeber
  • Springer  (2)
  • American Institute of Physics (AIP)
  • BioMed Central
Erscheinungszeitraum
  • 2015-2019  (2)
  • 2005-2009
  • 1980-1984
  • 1965-1969
  • 1945-1949
  • +
Jahr
  • 2019  (2)
  • 1
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schwaha, T., Bernhard, J. M., Edgcomb, V. P., & Todaro, M. A. Aethozooides uraniae, a new deep-sea genus and species of solitary bryozoan from the Mediterranean Sea, with a revision of the Aethozoidae. Marine Biodiversity, 49(4), (2019): 1843-1856, doi: 10.1007/s12526-019-00948-w.
    Beschreibung: Bryozoa is a phylum of about 6000 extant species that are almost exclusively colonial. Few species of the uncalcified Gymnolaemata, the ctenostomes, however, show solitary forms that essentially consist of single zooids. Recently, several specimens of a solitary ctenostome bryozoan were encountered for the first time in the deep Mediterranean Sea, at the edge of an anoxic brine lake. Differences in size, tentacle number, and in the variability of cystid appendages set these specimens apart from all other known solitary species. Moreover, additional morphological autapomorphic traits suggest the erection of a novel genus to allocate the new species. Consequently, the new taxon Aethozooides gen. nov. is proposed in virtue of the general resemblance of the Mediterranean specimens with those of the genus Aethozoon Hayward, 1978. Aethozooides uraniae gen. et sp. nov. shows significant variability in the number and location of cystid appendages that range from two on the basal side to one or two on the zooid mid-peristomial position and/or, rarely, on the terminal frontal side. The polypide possesses a distinct, long tentacle crown always carrying 10 tentacles. The prominent retractor muscle consists of numerous bundles that, in contrast to other known gymnolaemates, attach not only to the lophophoral base but also to various parts of the gut. Distally, the aperture shows a set of four apertural muscles including four parieto-vaginal bands. Reviewing the state and diversity of solitary ctenostomes, we propose a revision of the family Aethozoidae to include the genera Franzenella d’Hondt, 1983, Aethozoon, Aethozooides, and two species currently affiliated to the genus Franzenella (F. monniotae and F. radicans) for which we erected the new taxon Solella gen. nov. Keywords
    Beschreibung: Open access funding provided by University of Vienna. This study was supported by NSF grants OCE-0849578 to VPE and JMB, OCE-1061391 to JMB and VPE, and The Investment in Science Fund at WHOI.
    Schlagwort(e): Ctenostomata ; Lophophore ; Cystid appendages ; Arachnidioidea ; Solella
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mitchell, S. J., Houghton, B. F., Carey, R. J., Manga, M., Fauria, K. E., Jones, M. R., Soule, S. A., Conway, C. E., Wei, Z., & Giachetti, T. Submarine giant pumice: A window into the shallow conduit dynamics of a recent silicic eruption. Bulletin of Volcanology, 81(7), (2019): 42, doi:10.1007/s00445-019-1298-5.
    Beschreibung: Meter-scale vesicular blocks, termed “giant pumice,” are characteristic primary products of many subaqueous silicic eruptions. The size of giant pumices allows us to describe meter-scale variations in textures and geochemistry with implications for shearing processes, ascent dynamics, and thermal histories within submarine conduits prior to eruption. The submarine eruption of Havre volcano, Kermadec Arc, in 2012, produced at least 0.1 km3 of rhyolitic giant pumice from a single 900-m-deep vent, with blocks up to 10 m in size transported to at least 6 km from source. We sampled and analyzed 29 giant pumices from the 2012 Havre eruption. Geochemical analyses of whole rock and matrix glass show no evidence for geochemical heterogeneities in parental magma; any textural variations can be attributed to crystallization of phenocrysts and microlites, and degassing. Extensive growth of microlites occurred near conduit walls where magma was then mingled with ascending microlite-poor, low viscosity rhyolite. Meter- to micron-scale textural analyses of giant pumices identify diversity throughout an individual block and between the exteriors of individual blocks. We identify evidence for post-disruption vesicle growth during pumice ascent in the water column above the submarine vent. A 2D cumulative strain model with a flared, shallow conduit may explain observed vesicularity contrasts (elongate tube vesicles vs spherical vesicles). Low vesicle number densities in these pumices from this high-intensity silicic eruption demonstrate the effect of hydrostatic pressure above a deep submarine vent in suppressing rapid late-stage bubble nucleation and inhibiting explosive fragmentation in the shallow conduit.
    Beschreibung: This study was funded primarily through an NSF Ocean grant: OCE-1357443 (SJM, BFH and RJC). MM is supported by NSF EAR 1447559. The μXRT analysis was performed at the Lawrence Berkeley National Lab Advanced Light Source beamline 8.3.2 and the large CT scan by SAS at the University of Texas Austin micro-CT facility. Capillary flow porometry and He-pycnometry were assisted by TG and MRJ at the University of Oregon. Microprobe analysis was conducted at the University of Hawai’i at Mānoa. CEC was supported by post-doctoral research fellowship from the Japan Society for the Promotion of Science (JSPS16788). We would like to thank Kenichiro Tani, Takashi Sano, and Eric Hellebrand for their assistance with geochemical data acquisition, JoAnn Sinton and Wagner Petrographic for thin section preparation, Zachary Langdalen for binary processing of BSE images, Warren M. McKenzie for measuring clast densities, and Dula Parkinson for guidance with the μXRT imaging. We further acknowledge the full scientific team, crew and Jason ROV team (Woods Hole Oceanographic Institute) aboard the R/V Roger Revelle (Scripps Institute of Oceanography) during the MESH expedition in 2015, without whom, this study would not have been possible. Finally, we thank Andrew Harris, Katharine Cashman, Lucia Gurioli and an anonymous reviewer for their insightful and helpful reviews of the manuscript.
    Schlagwort(e): Giant pumice ; Submarine volcanism ; Banding ; Tube pumice ; Bubble deformation ; Conduit dynamics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...