ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Anthropogenic pressures  (1)
  • Banding  (1)
  • Central Italy  (1)
  • Springer  (2)
  • BioMed Central  (1)
  • American Institute of Physics (AIP)
  • Annual Reviews
  • 2015-2019  (3)
  • 2005-2009
  • 1980-1984
  • 1965-1969
  • 1945-1949
  • 1935-1939
  • 2019  (3)
Collection
Publisher
  • Springer  (2)
  • BioMed Central  (1)
  • American Institute of Physics (AIP)
  • Annual Reviews
Years
  • 2015-2019  (3)
  • 2005-2009
  • 1980-1984
  • 1965-1969
  • 1945-1949
  • +
Year
  • 1
    Publication Date: 2022-06-09
    Description: In this paper we describe the macroseismic effects produced by the long and destructive seismic sequence that hit Central Italy from 24 August 2016 to January 2017. Starting from the procedure adopted in the complex field survey, we discuss the characteristics of the building stock and its classification in terms of EMS-98 as well as the issues associated with the intensity assessment due to the evolution of damage caused by multiple shocks. As a result, macroseismic intensity for about 300 localities has been determined; however, most of the intensities assessed for the earthquakes following the first strong shock on 24 August 2016, represent the cumulative effect of damage during the sequence. The earthquake parameters computed from the macroseismic datasets are compared with the instrumental determinations in order to highlight critical issues related to the assessment of macroseismic parameters of strong earthquakes during a seismic sequence. The results also provide indications on how location and magnitude computation can be strongly biased when dealing with historical seismic sequences.
    Description: Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC)
    Description: Published
    Description: 2407–2431
    Description: 4T. Sismicità dell'Italia
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Description: 5SR TERREMOTI - Convenzioni derivanti dall'Accordo Quadro decennale INGV-DPC
    Description: JCR Journal
    Keywords: Central Italy ; 2016–2017 Earthquake sequence ; Cumulative damage ; EMS-98 ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mitchell, S. J., Houghton, B. F., Carey, R. J., Manga, M., Fauria, K. E., Jones, M. R., Soule, S. A., Conway, C. E., Wei, Z., & Giachetti, T. Submarine giant pumice: A window into the shallow conduit dynamics of a recent silicic eruption. Bulletin of Volcanology, 81(7), (2019): 42, doi:10.1007/s00445-019-1298-5.
    Description: Meter-scale vesicular blocks, termed “giant pumice,” are characteristic primary products of many subaqueous silicic eruptions. The size of giant pumices allows us to describe meter-scale variations in textures and geochemistry with implications for shearing processes, ascent dynamics, and thermal histories within submarine conduits prior to eruption. The submarine eruption of Havre volcano, Kermadec Arc, in 2012, produced at least 0.1 km3 of rhyolitic giant pumice from a single 900-m-deep vent, with blocks up to 10 m in size transported to at least 6 km from source. We sampled and analyzed 29 giant pumices from the 2012 Havre eruption. Geochemical analyses of whole rock and matrix glass show no evidence for geochemical heterogeneities in parental magma; any textural variations can be attributed to crystallization of phenocrysts and microlites, and degassing. Extensive growth of microlites occurred near conduit walls where magma was then mingled with ascending microlite-poor, low viscosity rhyolite. Meter- to micron-scale textural analyses of giant pumices identify diversity throughout an individual block and between the exteriors of individual blocks. We identify evidence for post-disruption vesicle growth during pumice ascent in the water column above the submarine vent. A 2D cumulative strain model with a flared, shallow conduit may explain observed vesicularity contrasts (elongate tube vesicles vs spherical vesicles). Low vesicle number densities in these pumices from this high-intensity silicic eruption demonstrate the effect of hydrostatic pressure above a deep submarine vent in suppressing rapid late-stage bubble nucleation and inhibiting explosive fragmentation in the shallow conduit.
    Description: This study was funded primarily through an NSF Ocean grant: OCE-1357443 (SJM, BFH and RJC). MM is supported by NSF EAR 1447559. The μXRT analysis was performed at the Lawrence Berkeley National Lab Advanced Light Source beamline 8.3.2 and the large CT scan by SAS at the University of Texas Austin micro-CT facility. Capillary flow porometry and He-pycnometry were assisted by TG and MRJ at the University of Oregon. Microprobe analysis was conducted at the University of Hawai’i at Mānoa. CEC was supported by post-doctoral research fellowship from the Japan Society for the Promotion of Science (JSPS16788). We would like to thank Kenichiro Tani, Takashi Sano, and Eric Hellebrand for their assistance with geochemical data acquisition, JoAnn Sinton and Wagner Petrographic for thin section preparation, Zachary Langdalen for binary processing of BSE images, Warren M. McKenzie for measuring clast densities, and Dula Parkinson for guidance with the μXRT imaging. We further acknowledge the full scientific team, crew and Jason ROV team (Woods Hole Oceanographic Institute) aboard the R/V Roger Revelle (Scripps Institute of Oceanography) during the MESH expedition in 2015, without whom, this study would not have been possible. Finally, we thank Andrew Harris, Katharine Cashman, Lucia Gurioli and an anonymous reviewer for their insightful and helpful reviews of the manuscript.
    Keywords: Giant pumice ; Submarine volcanism ; Banding ; Tube pumice ; Bubble deformation ; Conduit dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Krol, L., Gorsich, E. E., Hunting, E. R., Govender, D., van Bodegom, P. M., & Schrama, M. Eutrophication governs predator-prey interactions and temperature effects in Aedes aegypti populations. Parasites & Vectors, 12(1), (2019):179, doi:10.1186/s13071-019-3431-x.
    Description: Background Mosquito population dynamics are driven by large-scale (e.g. climatological) and small-scale (e.g. ecological) factors. While these factors are known to independently influence mosquito populations, it remains uncertain how drivers that simultaneously operate under natural conditions interact to influence mosquito populations. We, therefore, developed a well-controlled outdoor experiment to assess the interactive effects of two ecological drivers, predation and nutrient availability, on mosquito life history traits under multiple temperature regimes. Methods We conducted a temperature-controlled mesocosm experiment in Kruger National Park, South Africa, with the yellow fever mosquito, Aedes aegypti. We investigated how larval survival, emergence and development rates were impacted by the presence of a locally-common invertebrate predator (backswimmers Anisops varia Fieber (Notonectidae: Hemiptera), nutrient availability (oligotrophic vs eutrophic, reflecting field conditions), water temperature, and interactions between each driver. Results We observed that the effects of predation and temperature both depended on eutrophication. Predation caused lower adult emergence in oligotrophic conditions but higher emergence under eutrophic conditions. Higher temperatures caused faster larval development rates in eutrophic but not oligotrophic conditions. Conclusions Our study shows that ecological bottom-up and top-down drivers strongly and interactively govern mosquito life history traits for Ae. aegypti populations. Specifically, we show that eutrophication can inversely affect predator–prey interactions and mediate the effect of temperature on mosquito survival and development rates. Hence, our results suggest that nutrient pollution can overrule biological constraints on natural mosquito populations and highlights the importance of studying multiple factors.
    Description: This study was supported by the Gratama Fund, Grant Number 2016.08, which was awarded to MS, supported by the Uyttenboogaart-Eliasen foundation for comparative entomology, Grant No. SUB.2016.12.08 and the RCN-IDEAS grant which was awarded to EEG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
    Keywords: Ecological drivers ; Vector-borne ; Anthropogenic pressures ; Interaction effects ; Temperature ; Biodiversity decline
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...