ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Ambient seismic noise  (1)
  • Banding  (1)
  • Springer  (2)
  • American Institute of Physics (AIP)
  • Annual Reviews
  • BioMed Central
  • 2015-2019  (2)
  • 2005-2009
  • 1980-1984
  • 1965-1969
  • 1945-1949
  • 1935-1939
  • 2019  (2)
Sammlung
Verlag/Herausgeber
  • Springer  (2)
  • American Institute of Physics (AIP)
  • Annual Reviews
  • BioMed Central
Erscheinungszeitraum
  • 2015-2019  (2)
  • 2005-2009
  • 1980-1984
  • 1965-1969
  • 1945-1949
  • +
Jahr
  • 1
    Publikationsdatum: 2020-10-22
    Beschreibung: The storage concession "Minerbio Stoccaggio" (Bologna, Northern Italy) covers a 69 km 2 area, 65% of hich is located in the Minerbio municipality. Since 1979, a microseismic network for the monitoring of seismicity, eventually induced by gas storage activities, has been installed in this area. The network was operated by Stogit S.p.A, a subsidiary company of Snam, which is the largest storage operator in Italy. In 2016, the microseismic network, consisting of three surface stations and one 100-m-deep borehole sensor with minimum interstation distances of about 3.0 km, was integrated with 12 regional stations installed in an 80 × 80 km 2 area centered on the surface projection of the reservoir. In 2018, the microseismic network was enhanced by adding one surface and three 150-m-deep borehole stations. In this work, we evaluate the detection improvement of the microseismic network, integrated with the regional stations. We define two crustal volumes for earthquake detection: the inner domain of detection, IDD (10 × 10 × 5) km 3 , within which we should ensure the highest network performance, and the extended domain of detection, EDD (22 × 22 × 11) km 3 . By comparing the simulated power spectral density of hypothetical seismic sources located in EDD with the average power spectra of ambient seismic noise observed at each station site, we calculate detection and localization thresholds for the two above-mentioned networks. Under unfavourable noise conditions, we find that the present operative seismic network allows locating earthquakes with M L ≥ 0.8 occurring at the depth of the reservoir and with M L ≥ 1.0 if located within IDD.
    Beschreibung: Funding information This study received financial support from BComune di Minerbio^ under the grant BSperimentazione ILG Minerbio^ (grant number 0913.010)
    Beschreibung: Published
    Beschreibung: 967–977
    Beschreibung: 3SR TERREMOTI - Attività dei Centri
    Beschreibung: JCR Journal
    Schlagwort(e): Induced seismicity ; Earthquake detection ; Ambient seismic noise ; Microseismic monitoring ; MiSE ; oilfield monitoring guidelines
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mitchell, S. J., Houghton, B. F., Carey, R. J., Manga, M., Fauria, K. E., Jones, M. R., Soule, S. A., Conway, C. E., Wei, Z., & Giachetti, T. Submarine giant pumice: A window into the shallow conduit dynamics of a recent silicic eruption. Bulletin of Volcanology, 81(7), (2019): 42, doi:10.1007/s00445-019-1298-5.
    Beschreibung: Meter-scale vesicular blocks, termed “giant pumice,” are characteristic primary products of many subaqueous silicic eruptions. The size of giant pumices allows us to describe meter-scale variations in textures and geochemistry with implications for shearing processes, ascent dynamics, and thermal histories within submarine conduits prior to eruption. The submarine eruption of Havre volcano, Kermadec Arc, in 2012, produced at least 0.1 km3 of rhyolitic giant pumice from a single 900-m-deep vent, with blocks up to 10 m in size transported to at least 6 km from source. We sampled and analyzed 29 giant pumices from the 2012 Havre eruption. Geochemical analyses of whole rock and matrix glass show no evidence for geochemical heterogeneities in parental magma; any textural variations can be attributed to crystallization of phenocrysts and microlites, and degassing. Extensive growth of microlites occurred near conduit walls where magma was then mingled with ascending microlite-poor, low viscosity rhyolite. Meter- to micron-scale textural analyses of giant pumices identify diversity throughout an individual block and between the exteriors of individual blocks. We identify evidence for post-disruption vesicle growth during pumice ascent in the water column above the submarine vent. A 2D cumulative strain model with a flared, shallow conduit may explain observed vesicularity contrasts (elongate tube vesicles vs spherical vesicles). Low vesicle number densities in these pumices from this high-intensity silicic eruption demonstrate the effect of hydrostatic pressure above a deep submarine vent in suppressing rapid late-stage bubble nucleation and inhibiting explosive fragmentation in the shallow conduit.
    Beschreibung: This study was funded primarily through an NSF Ocean grant: OCE-1357443 (SJM, BFH and RJC). MM is supported by NSF EAR 1447559. The μXRT analysis was performed at the Lawrence Berkeley National Lab Advanced Light Source beamline 8.3.2 and the large CT scan by SAS at the University of Texas Austin micro-CT facility. Capillary flow porometry and He-pycnometry were assisted by TG and MRJ at the University of Oregon. Microprobe analysis was conducted at the University of Hawai’i at Mānoa. CEC was supported by post-doctoral research fellowship from the Japan Society for the Promotion of Science (JSPS16788). We would like to thank Kenichiro Tani, Takashi Sano, and Eric Hellebrand for their assistance with geochemical data acquisition, JoAnn Sinton and Wagner Petrographic for thin section preparation, Zachary Langdalen for binary processing of BSE images, Warren M. McKenzie for measuring clast densities, and Dula Parkinson for guidance with the μXRT imaging. We further acknowledge the full scientific team, crew and Jason ROV team (Woods Hole Oceanographic Institute) aboard the R/V Roger Revelle (Scripps Institute of Oceanography) during the MESH expedition in 2015, without whom, this study would not have been possible. Finally, we thank Andrew Harris, Katharine Cashman, Lucia Gurioli and an anonymous reviewer for their insightful and helpful reviews of the manuscript.
    Schlagwort(e): Giant pumice ; Submarine volcanism ; Banding ; Tube pumice ; Bubble deformation ; Conduit dynamics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...