ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life Sciences (General)  (95)
  • 2020-2024
  • 2015-2019  (95)
  • 2019  (95)
Collection
Keywords
Years
  • 2020-2024
  • 2015-2019  (95)
Year
  • 1
    Publication Date: 2020-01-04
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: M19-7792 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 20, 2019 - Nov 23, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-24
    Description: For over 100 years, neurologists have used eye movements to identify neural impairment, disease, or injury. Prior to the age of modern imaging, qualitative assessment of eye movements was a critical, routine component of diagnosis and remains today a routine law-enforcement tool for detecting impaired driving due to drugs or alcohol. We will describe the application of a simple 5-minute oculomotor tracking task coupled with a broad range of quantitative analyses of high-resolution oculomotor measurements for the sensitive detection of sub-clinical neural impairment and for the potential differentiation of various causes. Specifically, we will show that there are distinct patterns of impairment across our set of oculometric parameters observed with brain trauma, sleep and circadian disruption, and alcohol consumption. Such differences could form the basis of a self-administered medical monitoring or diagnostic support tool.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN75134 , Perception and Sensorimotor System Workshop; Dec 16, 2019 - Dec 17, 2019; Shanghai; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-19
    Description: Behavioral characteristics of D.melanogaster are strongly influenced by intrinsic and extrinsic factors, allowing scientists to assess how changes in physiology or environment manifest into behavior. Conversely, assessing changes in behavior of specimens provides valuable information about how the physiology of that organism responds to external changes. In this project, we developed a computer program to automate behavioral analyses of larvae and adult D. melanogaster aboard the International Space Station using on-board video recordings. Utilizing freely available libraries for Python, we set parameters to compute the number of animals, amount of locomotion as distance or movement, and the change in the perimeter of the larvae's outer shape to quantify behaviors such as curling or peristaltic full body wall contractions. Results show that our program is an efficient tool for analysis of larvae and adult locomotive behavior, thus providing scientists with a low-cost, efficient, and reliable method of quantifying behavioral data.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN69423 , Annual Meeting of the American Society for Gravitational and Space Research; Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-14
    Description: Tardigrades are microscopic invertebrates that are uniquely radio tolerant among animals, and while the mechanisms of radiotolerance in some species is becoming understood, such mechanisms in Hypsibius dujardini, the most radio tolerant fully aquatic tardigrade, are unknown. We asked 1) Is H. dujardini resistant to direct or indirect DNA damage due to ionizing radiation? and 2) Is this resistance through initial DNA protection or efficient repair once damage has occurred? We confirmed H. dujardinis extraordinary radiotolerance but encountered challenges in performing molecular techniques, thus identifying a need for standardization of tardigrade experimental protocols.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN75890 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-12-14
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN76184 , Bion-M2 Meeting; Dec 09, 2019; Moscow
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-07
    Description: Future long-duration missions face significant challenges maintaining crew health. A critical area is supplying adequate nutrition, as certain vitamins and nutrients in supplied foods and supplements demonstrate substantial degradation during extended storage. To address this issue, we are developing and flight-testing a platform technology that demonstrates in situ microbial production of targeted nutrients over extended mission durations. This 5-year experiment, known as BioNutrients-1, was started on the International Space Station in May 2019. It involves two components: an on-orbit hydration and production experiment; and the development of space-compatible, key bio-manufacturing microorganisms. On-orbit testing utilizes a small "production pack" system that encloses sterile edible growth substrate and desiccated Saccharomyces cerevisiae strains genetically engineered to produce the nutrients beta-carotene or zeaxanthin. On hydration and mixing of the production pack, the organisms revive and grow until limited by the depletion of growth media, hypothetically leading to consistent amounts of biomass and nutrients. In eventual mission applications, the packet contents would be heat treated to inactivate the microorganisms prior to consumption. For these flight experiments, the packet will not be heat treated, but will instead be frozen for return to Earth for analyses. In addition to the production pack trials, 14 different microorganisms/treatments were also delivered to ISS for long-duration storage. These samples will be intermittently returned to Earth and analyzed to determine survival rates and genomics. For this presentation, initial data from returned samples and ground controls will be discussed.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN75756 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 20, 2019 - Nov 23, 2019; Denver. CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-07
    Description: The Micro-12 flight experiment was launched on SpaceX-15 and completed during berthing on the International Space Station. The goal of this experiment was to understand the effects of spaceflight and microgravity on the physiology of the model exoelectrogen Shewanella oneidensis MR-1. BioServe Fluid Processing Apparatus (FPA) and Group Activation Pack (GAP) hardware systems were used for both flight and ground control tests. Under spaceflight conditions, extracellular electron transfer (EET) rates were found to be significantly increased on insoluble substrates, while biofilm development appeared to be unchanged under the conditions tested; these processes are critical for microbial-assisted bioelectrochemical systems. Additionally, RNAseq analysis, proteomic profiling, and competitive mutant fitness profiling were performed to gain further understanding of microbial physiology under EET-respiring conditions during spaceflight. Overall, the results of the Micro-12 project support the idea that Shewanella oneidensis MR-1, in particular, and exoelectrogens in general could be useful chassis organisms for synthetic biology applications using microbial bioelectrochemical systems. These findings will assist bioengineering and synthetic biology development efforts harnessing the unique capabilities of exoelectrogens for life support and in situ resource utilization.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN75761 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-12-05
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: JSC-E-DAA-TN73253 , MSC-26704-1 , 2019 Johnson Space Center (JSC) Technology Showcase; Oct 31, 2019; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-04
    Description: Since Apollo 17 in 1972, NASA has sent no humans or other biological organisms outside of Earth's protective magnetosphere. Recently, NASA has set its sights on human exploration in deep space, with an ambitous plan to put astronauts back on the Moon by 2024 and to eventually land human missions on Mars. Such missions will require significant countermeasures, likely both technological and biomedical, to protect biology from chronic radiation exposure. CubeSats can inform these countermeasures by querying relevant space environments with model organisms.NASA has launched five biological CubeSat missions into low-Earth orbit (LEO). GeneSat-1 was launched in 2006 to study gene expression and increase our knowledge of how spaceflight affects microbes. Similar life-support technologies were then used in PharmaSat and O/OREOS, which launched in 2009 and 2010, respectively. PharmaSat contained optical systems to examine how yeast cells responded to an antifungal treatment. One of O/OREOS payloads, SESLO (Space Environment Survivability of Living Organisms), housed dormant microorganisms, which were rehydrated on orbit to track alterations to growth and metabolism induced by microgravity and radiation. In 2014, NASA launched SporeSat to study the mechanisms of plant cell gravity sensing using lab-on-a-chip devices. Most recently, in 2017, NASA launched EcAMSat (E. coli AntiMicrobial Satellite), which investigated the effects of microgravity on antibiotic resistance of a pathogenic bacterium. Each one of these missions increased our understanding of the biological effects of spaceflight in LEO, while refining technologies and imparting valuable lessons to the next generation of CubeSats.CubeSats housing translational biological models are therefore ideal for defining the hazards of deep space travel, as they can provide critical data over relevant durations. BioSentinel, a next-generation deep-space CubeSat, is planned to launch as a secondary payload on Artemis 1 in 2020. BioSentinel will study the DNA damage response to deep space radiation in yeast.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN75631 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-28
    Description: Space crop production will be important in future long duration exploration missions to supplement the packaged diet with fresh bioactive nutrients. Plant care and the addition of fresh veggies to the diet may also have a role in astronaut well-being. Pick-and-eat salad crops are the best candidates for this near-term supplementation since they require minimal processing or preparation to add to meals. While light quality can strongly influence plant responses on Earth, the impacts of light quality on plant growth and composition in spaceflight remain unclear. The VEG-04 experiment uses two Veggie plant growth chambers on the International Space Station to simultaneously test different red: blue light ratios on the growth of Mizuna mustard, a leafy green salad crop. In addition to plant health and yield, the composition of key nutrients is assessed. Astronauts conduct on-board organoleptic evaluation of the fresh produce. Microbial food safety of returned produce is examined, and a Hazard Analysis Critical Control Point (HACCP) plan has been developed for this crop. VEG-04 consists of two experiments, one lasting 28 days with a single harvest, and the second lasting 56 days, with three cut-and-come-again harvests. These different scenarios provide an opportunity to test two production concepts, examine different fertilizers, monitor microbial changes over time for this crop, and assess potential impacts of interacting with plants on crew behavioral health and performance in spaceflight operations. In ground testing, plant growth was not significantly different across the different light treatments, however nutrient composition did differ significantly. Flight test results will be compared with ground data. This research was co-funded by NASA's Human Research Program and Space Biology in the ILSRA 2015 NRA call.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN75352 , Annual Meeting of the American Society for Gravitational and Space Research; Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...