ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (52,100)
  • American Physical Society (APS)  (18,783)
  • Oxford University Press  (13,310)
  • Copernicus  (12,690)
  • American Geophysical Union
  • 2015-2019  (52,100)
  • 2018  (52,100)
Collection
Publisher
Years
  • 2015-2019  (52,100)
Year
  • 1
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3European Geosciences Union EGU General Assembly, Vienna, Austria, 2018-04-08-2018-04-13Copernicus
    Publication Date: 2018-06-18
    Description: We use a comprehensive suite of partially laminated high-resolution sediment cores from the Bering Sea, covering a depth transect from 1100 m to 2700 m to study deglacial surface ocean warming patterns, associated changes in biological productivity, oxygen minimum zone dynamics and continent-ocean links through Yukon river runoff. We apply a combination of planktic and benthic isotopes, x-ray fluorescence (XRF)-derived ele- mental ratios and a multi-proxy assessment of changes in upper ocean temperatures. Severe oxygen depletions occurred during the Bølling/Allerød (B/A) and early Holocene, which is in accordance with other locations in the North Pacific, especially the Alaska margin. Detailed analysis of the timing of lamination occurrence between the different sediment cores revealed that the onset of severe anoxia at the beginning of the B/A and early Holocene is a near-synchronous event, while the disappearance of laminations is a diachronic process. The deglacial Oxygen Minimum Zone(OMZ) strengthening is mainly driven by increased export production, visible in XRF-derived elemental ratios, and corresponding high accumulation rates of biogenic components. The export production in turn is a response to rising sea surface temperatures, decreased sea ice cover and increased thermal stratification, while a major nutrient source was the eastern continental shelf, which was flooded during the deglacial global sea level rise. It is discussed controversially whether oxygenation variations in the deglacial subarctic Pacific were coupled to changes in mid-depth water chemistry, or rather a response to physical processes like deep-intermediate ocean or mixed layer warming, or stratification changes. However, knowledge of the driving forcing mechanism for OMZ strengthening is of particular importance, as these are tightly coupled to the regional marine carbon budget, e.g. via the strength and efficiency of the biological pump. Here, our laminated sediments provided the opportunity to study ocean dynamics in exceptional detail, possible on decadal to annual timescales. Due to the correlation patterns of our records to the NGRIP oxygen isotope record through layer counts we presume that (i) the presence of laminations is tightly coupled to submillennial, short-term warm phases, especially during the Bølling-Allerød (B/A), (ii) that the laminations represent annual layered sediments (varves). The latter point in conjunction with our geochemical proxies strongly supports an atmospheric teleconnection between SE Asia, the North Atlantic and the North Pacific, with observed changes in mid-depth ocean dynamics occurring on fast, nearly decadal timescales. Thus, the Bering Sea OMZ is a highly sensitive system reacting almost instantaneously to small temperature changes and therefore has the potential to influence the global carbon budget on short timescales, in particular during episodes of rapidly warming climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-15
    Description: Understanding the enigmatic intraplate volcanism in the Tristan da Cunha region requires knowledge of the temperature of the lithosphere and asthenosphere beneath it. We measured phasevelocity curves of Rayleigh waves using cross-correlation of teleseismic seismograms from an array of ocean-bottom seismometers around Tristan, constrained a region-average, shear-velocity structure, and inferred the temperature of the lithosphere and asthenosphere beneath the hotspot. The ocean-bottom data set presented some challenges, which required data-processing and measurement approaches different from those tuned for land-based arrays of stations. Having derived a robust, phase-velocity curve for the Tristan area, we inverted it for a shear wave velocity profile using a probabilistic (Markov chain Monte Carlo) approach. The model shows a pronounced low-velocity anomaly from 70 to at least 120 km depth. VS in the low velocity zone is 4.1–4.2 km/s, not as low as reported for Hawaii (�4.0 km/s), which probably indicates a less pronounced thermal anomaly and, possibly, less partial melting. Petrological modeling shows that the seismic and bathymetry data are consistent with a moderately hot mantle (mantle potential temperature of 1,410–1,4308C, an excess of about 50–1208C compared to the global average) and a melt fraction smaller than 1%. Both purely seismic inversions and petrological modeling indicate a lithospheric thickness of 65–70 km, consistent with recent estimates from receiver functions. The presence of warmer-than-average asthenosphere beneath Tristan is consistent with a hot upwelling (plume) from the deep mantle. However, the excess temperature we determine is smaller than that reported for some other major hotspots, in particular Hawaii.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-03-05
    Description: The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July–11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of −78.9 and −47.0 W m ^-2 at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of −43.3 W/m ^2, estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m^−2. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m^−2/τ550 and −71 W^m−2/τ550 at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day^−1 inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m^2s^−2
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-06
    Description: Recent observations of near-surface soil temperatures over the circumpolar Arctic show accelerated warming of permafrost-affected soils. The availability of a comprehensive near-surface permafrost and active layer dataset is critical to better understanding climate impacts and to constraining permafrost thermal conditions and its spatial distribution in land system models. We compiled a soil temperature dataset from 72 monitoring stations in Alaska using data collected by the US Geological Survey, the National Park Service, and the University of Alaska Fairbanks permafrost monitoring networks. The array of monitoring stations spans a large range of latitudes from 60.9 to 71.3 N and elevations from near sea level to~ 1300 m, comprising tundra and boreal forest regions. This dataset consists of monthly ground temperatures at depths up to 1 m, volumetric soil water content, snow depth, and air temperature during 1997–2016. These data have been quality controlled in collection and processing. Meanwhile, we implemented data harmonization evaluation for the processed dataset. The final product (PF-AK, v0. 1) is available at the Arctic Data Center (https://doi. org/10.18739/A2KG55).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: Four years after the Genomic Observatories Network was formally established as a collaboration between the Group on Earth Observations Biodiversity Observation Network and the Genomic Standards Consortium, we review the development of the network. Considering institutional infrastructure, we note the growing role of omic observation in active and increasingly interlinked marine networks, with examples such as EMBRC/ASSEMBLE, International Long Term Ecological Research Network, AtlantOS, National Association of Marine Labs, Smithsonian MarineGEO, and Partnership on Observation of the Global Oceans. We also note some key human elements essential to meeting the networks' goals, address how the community is evolving, and why performing seemingly simple tasks within a broadly distributed community presents significant challenges even among those who have agreed to use standards. From the perspectives above, we review lessons learned from use cases that leverage Genomic Observatories Network, such as the Autonomous Reef Monitoring Structures (ARMS), Ocean Sampling Day (OSD) and myOSD, which included experiences with citizen science. Looking forward, we survey 1) promising new technologies for in situ biological observation (e.g., cheap 3D printed omics samplers), 2) progress towards adoption of omics methods in marine policy and conservation programs, and 3) opportunities that a Genomic Observatory brings, alone or embedded in a network, to address novel scientific questions and support Essential Biodiversity Variables, Essential Ocean Variables, and indices such as the Ocean Health Index. Given the data intensive nature of omics investigation, we note emerging cyberinfrastructure solutions, such as the Genomic Observatories Metadatabase (GeOMe), an open-access repository for geographic and ecological metadata associated with biosamples, and predictive modeling efforts, such as those of the Island Digital Ecosystem Avatar (IDEA) Consortium. Finally, we explore the potential of Genomic Observatories as components of high-resolution calibration sites. Such observatories would provide super-contextualized "data trusts" for machine learning and artificial intelligence applications that draw on multi-omic observation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC32018 Ocean Sciences Meeting, Portland, Oregon, USA, 2018-02-11-2018-02-16American Geophysical Union
    Publication Date: 2020-02-12
    Description: Target audience: All ocean scientists who wish to share or discover best practice documents in their domain. Background: A working group convened under the AtlantOS project and including partners from ODIP, IODE, JCOMM, IEEE, and AWI is currently developing new technologies and approaches for handling best practices (BPs) across ocean science. The goal of the working group is to create a sustained repository for BPs, to ease their propagation and adoption. Goals: After briefly describing its work, the BP working group will engage town hall participants in a discussion on 1) how best to find and centrally archive BPs in participants' disciplines and 2) what capacities a central archive of BPs would need to help participants create, discover, share, and archive their BPs. The participant input gathered will be used to further the development of a multidisciplinary repository for BPs and better harmonise ocean observation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-16
    Description: The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the Equator) palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ∼3Ma), the Last Glacial Maximum (LGM, ∼21ka), mid-Holocene (MH, ∼6ka), and pre-industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last ∼3Myr. Comparison of simulated climate with proxy-based reconstructions for the MH and LGM reveal satisfactory to good performance of the model in reproducing precipitation changes, although in some cases discrepancies between neighbouring proxy observations highlight contradictions between proxy observations themselves. Finally, we document regions where the largest magnitudes of late Cenozoic changes in precipitation and temperature occur and offer the highest potential for future observational studies that quantify the impact of climate change on denudation and weathering rates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3Earth System Dynamics, Copernicus, 9(3), pp. 939-954, ISSN: 2190-4979
    Publication Date: 2018-07-09
    Description: In austral spring 2016 the Antarctic region experienced anomalous sea ice retreat in all sectors, with sea ice extent in October and November 2016 being the lowest in the Southern Hemisphere over the observational period (1979–present). The extreme sea ice retreat was accompanied by widespread warming along the coastal areas as well as in the interior of the Antarctic continent. This exceptional event occurred along with a strong negative phase of the Southern Annular Mode (SAM) and the moistest and warmest spring on record, over large areas covering the Indian Ocean, the Ross Sea and the Weddell Sea. In October 2016, the positive anomalies of the totally integrated water vapor (IWV) and 2 m air temperature (T2m) over the Indian Ocean, western Pacific, Bellingshausen Sea and southern part of Ross Sea were unprecedented in the last 39 years. In October and November 2016, when the largest magnitude of negative daily sea ice concentration anomalies was observed, repeated episodes of poleward advection of warm and moist air took place. These results suggest the importance of moist and warm air intrusions into the Antarctic region as one of the main contributors to this exceptional sea ice retreat event.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...