ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (14,232)
  • MDPI Publishing  (9,060)
  • MDPI  (4,354)
  • Springer Nature  (818)
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • Springer Science + Business Media
  • 2015-2019  (14,232)
  • 1960-1964
  • 2018  (14,232)
  • Energy, Environment Protection, Nuclear Power Engineering  (14,232)
Collection
  • Articles  (14,232)
Publisher
Years
  • 2015-2019  (14,232)
  • 1960-1964
Year
  • 1
    Publication Date: 2018
    Description: Poor public health is always associated with the mismanagement of municipal solid waste (MSW). Many cities are besieged by MSW in the world. It is essential to do a good job in MSW management (MSWM). In order to improve the efficiency of MSWM, the Chinese government has intensively implemented relevant policies. There are still few studies on MSWM efficiency in China. The research aims to comprehensively analyze MSWM efficiency, find high-efficiency MSWM policy implementation routes and the breakthrough on improving MSWM efficiency. To measure Chinese MSWM efficiency accurately, this paper introduced the three-stage data envelopment analysis (DEA) model into the research. According to the results of DEA, Fuzzy c-Means algorithm was used to the cluster analysis of 33 typical cities. After eliminating the interference of the external environment and random disturbance, the mean value of MSWM efficiency declined from 0.575 to 0.544. The mean of pure technical efficiency (PTE) was declined from 0.966 to 0.611, while the mean of scale efficiency (SE) increased from 0.600 to 0.907. The PTE of central and northeastern cities was relatively low. The SE of western cities was comparatively high and the efficiency distribution of the eastern region was relatively scattered. In general, MSWM efficiency is low and expected to be improved. Regional differences in MSWM efficiency have been shown. The management effectiveness of eight pilot cities (MSW classification) is affirmative but not that significant. To improve MSWM efficiency, differential management for four types of cities should be carried out.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: The soil shrinkage behavior of mineral substrates needs to be considered for engineering long-term durable mineral liners of landfill capping systems. For this purpose, a novel three-dimensional laser scanning device was coupled with (a) a mathematical-empirical model and (b) in-situ tensiometer measurements as a combined approach to simultaneously determine the shrinkage behavior of a boulder marl, installed as top and bottom liner material at the Rastorf landfill (Northern Germany). The shrinkage behavior, intensity, and geometry were determined during a drying experiment with undisturbed soil cores (100 cm3) from two soil pits; the actual in-situ shrinkage was also determined in 0.2, 0.5, 0.8, and 1.0 m depth by pressure transducer tensiometer measurements during a four-year period. The volume shrinkage index was used to describe the pore size dependent shrinkage tendency and it was classified as low (4.9%) for the bottom liner. The in-situ matric potentials in the bottom liner ranged between −100 and −150 hPa, even during drier periods, thus, the previously highest observed drying range (pre-shrinkage stress) with values below −500 hPa and −1000 hPa was not exceeded. Therefore, the hydraulic stability of the bottom liner was given.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: The elevated supply of fine-grained sediment to a river system negatively impacts the water quality and ecosystem health. Therefore, quantification of the relative contribution from different sources to in-stream sediment is of major interest to target sediment mitigation best management practices (BMPs). The objective of this study was to determine the relative contribution from different sources of suspended sediment in an urbanized watershed (31 km2) located in the eastern part of Alabama, USA. Estimates of relative contributions from individual source types were assessed for two different particle size fractions, 63–212 μm (fine sand) and 〈63 μm (silt and clay). Results of this study indicate that the construction sites were the dominant source of suspended sediment in this watershed. The average annual subwatershed-level surface runoff determined using the Soil and Water Assessment Tool (SWAT) model varied from 2.3 to 11,980 mm ha−1 year−1. Areas that generate high surface runoff have the potential to contribute disproportionately high amounts of sediment to streams and therefore should be targeted for BMPs. The results of this study show that it is important to consider spatial and temporal variability in suspended sediment sources in order to develop and target sediment control management strategies. The sources of suspended sediment and sediment deposited on the stream bed might not necessarily be the same. Therefore, sampling both suspended sediment and stream bed sediment will improve our knowledge of watershed-level sediment transport processes.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: This paper aims at exploring how conservative and liberal newspapers in South Korea framed PyeongChang 2018 directly. Our research questions addressed four points: first, different attitudes of conservative and liberal newspapers in the PyeongChang news reporting; second, their success and failure in influencing public opinion; third, South Koreans’ perceptions on PyeongChang 2018; and fourth, South Korean public reliance on the newspapers. To investigate the framing differences, we employed a big data analytic method (automated semantic network analysis) with NodeXL (analytic software). Conclusively, we were able to find out four main findings. First, the conservative media showed pessimistic attitudes to the Olympics, and the liberal media did conversely. Second, despite the conservative media’s resourcefulness, they could not succeed in influencing public opinion. Third, the conservative media perceived the Olympics as an undesirable event, but the liberal media did the Olympics as a significant event for further peace promotion. Fourth, the conservative media’s framings did not considerably influence upon the public opinion. As a conclusion, the public are no longer passive recipients of the messages from the media. Instead, they tend to selectively accept the information from the media based on ‘collective intelligence’. This trend provides a significant implication for enhancing the sustainability of the media environment in South Korea.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018
    Description: Drought flow as the minimum flow rate required for restoration of the Mokgamcheon stream was calculated by the Storm Water Management Model (SWMM) V.5.0. The adequacy of drought flow to guarantee the minimum ecological environment was assessed using suitable low-flows not exceeding the maximum pollution concentration of the ecosystem calculated by Design FLOWs (DFLOW) V.4.1. Fish flows, which provide proper ecological habitat for fish, were calculated using Physical HABitat SIMulation (PHABSIM) V.1.5.2 to provide proper ecological habitat for target fishes such as Carassius auratus and Zacco platypus. The monthly expected instream flows were determined as the largest value between drought flow and fish flow. In most cases, instream flows were determined by drought flows exceeding fish flows that satisfy the condition of species habitat, but in the case of Carassius auratus, drought flows were less than fish flows in April, September, and October. Thus, structural measures for the supply of additional discharge were required. Instead, when natural environment-friendly instream structures, such as stepping stones were used, affordable ecological restoration that met the preferred conditions for discharge and depth of Carassius auratus was possible. The stepping stones were assessed using River2D V.0.95a to measure their effectiveness compared to other structural measures that would be costly and time-consuming to secure shortage of fish flow. Finally, the stability of the habitat was assessed through flood analysis; in case of a flood discharge of 5.2 m3/s obtained from time-series analysis, it was evaluated that the stability of habitats could be reasonable.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018
    Description: Among responses to governmental regulations for curbing carbon emissions, outsourcing carbon reduction to a specialized third-party is an important means to satisfy a variety of carbon-emission restraints. In this situation, however, designing efficient contracts for emission reducing while retaining appropriate supply-chain profit is a substantial but challenging problem. We therefore refine this from practice and consider a low-carbon supply chain consisting of one manufacturer and one retailer to analyze in which conditions the system should outsource its carbon reduction efforts to an external expert firm under the assumption that consumers with a sense of social responsibility prefer low carbon products. In the decarbonization expert firm embedded supply chain, we examine the respective impacts of three cost-pooling schemes for emission reduction on supply chain performances. We find that the manufacturer-undertaking contract is the worst in terms of profit and carbon reduction level among the contracts being studied, while the retailer-undertaking contract yields the best outcome in terms of the profit and performs well in carbon reduction when the contractor has cost efficiency in carbon reduction, which is even better than the joint-undertaking contract in carbon reduction when the contractor is inefficient. The study shows the diversity of contracts on outsourcing carbon reduction significantly impacts the supply chain profitability, carbon reduction efficiency and sustainability of operations.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: To solve the issues of frequent and inflexible contact charging system for inspection robots, the dynamic wireless charging system for the moving robot is introduced in this paper. In dynamic wireless charging systems with symmetric transceiver, including a single energized transmitting coil and one receiving coil, the receiving power drops significantly when the receiving coil moves to the boundary position of the energized transmitting coil. An asymmetric transceiver, including the single energized transmitting coil and two identical receiving coils connected in series is proposed for power stabilization during the moving process of the inspection robot. Circuit models of the systems with symmetric and asymmetric transceivers are developed. Expressions for the receiving power and the efficiency in these systems are derived. Then, the characteristics of the receiving power and efficiency varying with the position of receiving devices during one cycle of the switching control of the transmitting coils are investigated comparatively. The receiving power drop issue when the receiving coil is at the switching control position of the transmitting coils in the system with symmetric structure is solved by the proposed asymmetric structure with two receiving coils. Finally, the theoretical analyses are verified by experimental results and conclusions are drawn.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018
    Description: The efficiency of an internal combustion engine (ICE) is essential for automobiles and motorcycles. Several studies have demonstrated that the homogeneous charge compression ignition (HCCI) is a promising technology for realizing engines with high efficiency and low emissions. This study investigated the combustion characteristics of the HCCI using a 125 cc motorcycle engine with n-heptane fuel. The engine performance, combustion characteristics, and thermal efficiency were analyzed from experimental data. The results revealed that a leaner air–fuel mixture led to higher engine efficiency and output. The improvement of engine output is contradictory to the general trend. Energy balance analysis revealed that lower heat loss, due to the low cylinder gas temperature of lean combustion, contributed to higher efficiency. A double-Wiebe function provided excellent simulation of the mass fraction burned (MFB) of the HCCI. Air cycle simulation with the MFB, provided by the double-Wiebe function, was executed to investigate this phenomenon. The results indicated that a better combustion pattern led to higher thermal efficiency, and thus the engine output and thermal efficiency do not require a fast combustion rate in an HCCI engine. A better combustion pattern can be achieved by adjusting air–fuel ratio (AFR) and the rates of dual fuel and exhaust gas recirculation (EGR).
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018
    Description: Research on concentrated solar power (CSP) plants has been increasing in recent years. Supercritical carbon dioxide (S-CO2) has been applied to solar power plants due to its promising physical properties. S-CO2 has a relatively low critical temperature of 31.1 °C and owns high density in the supercritical region. Hence, it is a vital working fluid in the application of low temperature heat source and miniature power equipment. Due to the fact that solar power system has a constantly changing heat source according to season and weather, a satisfactory off-design performance is necessary for the turbine in a solar power system. In this work, a S-CO2 radial-inflow turbine based on CSP is designed. A thorough numerical analysis of the turbine is then performed. To investigate the off-design performance of this turbine, three types of nozzle profiles with different leading edge diameters are adopted. Mach number, temperature and pressure distribution are covered to present the off-design effect with different nozzle profiles. Moreover, the relation of output power, mass flow rate and efficiency with different leading edge diameter (LED) are analyzed. Results show that different LED has a vital influence on the aerodynamic characteristics and off-design performance of the S-CO2 turbine based on CSP. In addition, the designed turbine with LED = 4 mm can obtain the highest mass flow rate and output power. While the turbine with LED = 10 mm provides slightly better off-design efficiency for CSP plants.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018
    Description: Owing to use of mortar, which demonstrates low heat storage and discharge performance, conventional radiant floor-heating systems, based on the wet construction method and hot-water circulation, consume large amounts of energy. This study proposes a new type of radiant floor-heating system that is capable of reducing energy consumption via use of the latent heat of a phase change material (PCM), whereby the phase change, which occurs within, is induced by the thermal energy supplied by hot water. Simulation analyses revealed that hot-water supply temperatures, required to maintain the floor-surface and indoor-air temperatures at the set point using PCM latent heat, were in the range 40–41 °C. At supply water temperatures measuring less than 39 °C or exceeding 42 °C, the latent-heat effect of the phase change of the PCM tended to fail, and the corresponding floor-surface temperature assumed a value different from that corresponding to the set point. By contrast, supply temperatures in the range 40–41 °C resulted in return temperatures measuring approximately 27.4–27.5 °C, which in turn corresponded to an indoor air temperature of 21.6–22.6 °C that was stably maintained within ±0.6 °C of the 22 °C set-point temperature.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...