ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean  (2)
  • Chemistry  (1)
  • Inorganic Chemistry
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (3)
  • 2015-2019  (3)
  • 1995-1999
  • 1950-1954
  • 1925-1929
  • 2018  (3)
Collection
Publisher
Years
  • 2015-2019  (3)
  • 1995-1999
  • 1950-1954
  • 1925-1929
Year
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2018
    Description: Many chemical constituents are removed from the ocean by attachment to settling particles, a process referred to as โ€œscavenging.โ€ Radioisotopes of thorium, a highly particle-reactive element, have been used extensively to study scavenging in the ocean. However, this process is complicated by the highly variable chemical composition and concentration of particles in oceanic waters. This thesis focuses on understanding the cycling of thorium as affected by particle concentration and particle composition in the North Atlantic. This objective is addressed using (i) the distributions 228,230,234Th, their radioactive parents, particle composition, and bulk particle concentration, as measured or estimated along the GEOTRACES North Atlantic Transect (GA03) and (ii) a model for the reversible exchange of thorium with particles. Model parameters are either estimated by inversion (chapter 2-4), or prescribed in order to simulate 230Th in a circulation model (chapter 5). The major findings of this thesis follow. In chapters 2 and 3, I find that the rate parameters of the reversible exchange model show systematic variations along GA03. In particular, ๐‘˜1, the apparent first-order rate "constant" of Th adsorption onto particles, generally presents maxima in the mesopelagic zone and minima below. A positive correlation between ๐‘˜1 and bulk particle concentration is found, consistent with the notion that the specific rate at which a metal in solution attaches to particles increases with the number of surface sites available for adsorption. In chapter 4, I show that Mn (oxyhydr)oxides and biogenic particles most strongly influence ๐‘˜1 west of the Mauritanian upwelling, but that biogenic particles dominate ๐‘˜1 in this region. In chapter 5, I find that dissolved 230Th data are best represented by a model that assumes enhanced values of ๐‘˜1 near the seafloor. Collectively, my findings suggest that spatial variations in Th radioisotope activities observed in the North Atlantic reflect at least partly variations in the rate at which Th is removed from the water column.
    Description: This work was supported by the US National Science Foundation. Two US NSF grants have supported the research in this thesis (OCE-1232578 and OCE-155644).
    Keywords: Thorium ; Chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2018.
    Description: The biological carbon pump (BCP) helps to moderate atmospheric carbon dioxide levels by bringing carbon to the deep ocean, where it can be sequestered on timescales of centuries to millennia. Climate change is predicted to decrease the efficiency of the global BCP, however, the magnitude and timescale of this shift is largely uncertain and will likely impact some areas of the global ocean more significantly than others. Therefore, it is imperative that we (1) accurately quantify surface export and remineralization of particulate organic carbon (POC) via the BCP over large regions of the global ocean, (2) examine the factors controlling these POC fluxes and their variability, which includes the cycling of biologically-relevant trace metals, and (3) establish if and how the BCP is changing over time. This thesis focuses on addressing various aspects of these objectives using the 234Th-238U method across basin-scale GEOTRACES transects. First, the export and remineralization of POC were examined across large gradients in productivity, upwelling, community structure, and dissolved oxygen in the southeastern tropical Pacific Ocean. Although low oxygen zones are traditionally thought to have decreased POC flux attenuation relative to other regions of the global ocean and the low oxygen Pacific locations followed this pattern, regions that were functionally anoxic had enhanced attenuation in the upper 400 m. Second, trace metal export and remineralization were quantified across the Pacific transect. Because many trace metals are necessary for the metabolic functions of marine organisms and can co-limit marine productivity, the controls on the cycling of trace metals in the upper ocean were examined. Lastly, POC export was determined across two transects in the Western Arctic Ocean, where light and nutrient availability drive the biological pump. Upper ocean export estimates in the central basin did not reflect a substantial change in the biological pump compared to studies from the last three decades, however, an extensive maximum in 234Th relative to 238U deeper in the water column indicated that rapid vertical transport had occurred, which could suggest a more efficient biological pump in the Arctic Ocean.
    Description: I was funded under the NASA Earth and Space Science Fellowship Program grant (NNX13AP31H) for three years. I was also funded for work on the U.S. Pacific and Arctic GEOTRACES campaigns under two National Science Foundation grants (OCE-1232669 and OCE- 1458305). The MIT Henry G. Houghton Fund provided support for the purchase of computers and textbooks and the MIT Scurlock Fund allowed for my travel to Bermuda for cruise training. WHOI Academic Programs supplemented the aforementioned funding and also provided additional support for travel to conferences.
    Keywords: Carbon ; Climatic changes ; Ocean ; Thomas G. Thompson (Ship) Cruise TN303
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2018
    Description: In the ocean, chromium (Cr) is a redox-sensitive trace metal. The reduction of Cr(VI) to Cr(III) occurs in oxygen deficient zones (ODZs), and Cr reduction in general has been identified as a significant Cr isotope fractionation mechanism. This thesis presents the first Cr isotope variations (d53Cr) in ODZs of the ocean and adds to the sparse Cr isotope data published for modern seawater. I developed a precise and accurate Cr isotope method for seawater samples. Seawater acidification converts total Cr to Cr(III) which is preconcentrated by Mg(OH)2 coprecipitation. A three-column anion exchange chromatography scheme separates Cr from isobaric and polyatomic interferences present in the seawater and reagent matrixes. Isotope analysis is performed on a MC-ICP-MS IsoProbe. The addition of a 50Cr-54Cr double spike allows for accurate correction of procedural and instrumental Cr mass fractionations. The first Cr isotope ratio data for a full water column profile in the Pacific Ocean is presented. This station serves as a fully oxic counterpart to stations located within the ODZ of the Eastern Tropical North Pacific. At one station, Cr concentrations are lower and d53Cr values are heavier within the ODZ. This is consistent with Cr reduction resulting in isotopically lighter, particlereactive Cr(III), which is scavenged and exported from the water column. A strong correlation of d53Cr and d15NNO3- at this station suggests that Cr reduction may be microbially mediated instead of simply being a product of thermodynamic equilibrium. Alternatively, Cr may be reduced by Fe(II). In the anoxic bottom waters of the Santa Barbara Basin a strong Cr reduction signal (lower [Cr], heavier d53Cr) is observed, which may result from the same aforementioned Cr reduction mechanisms. A shift to the heaviest seawater Cr isotope signatures yet observed was detected in the oxic bottom waters of the shallow Arctic Chukchi shelf, while Cr concentrations decreased. This extreme isotope signal may result from Cr reduction by a reduced species (e.g. Fe(II)), which was released from the underlying anoxic shelf sediments. Cr in the Atlantic layer and in the bottom water of a central Arctic station appears to be shaped by a novel, unidentified process.
    Description: This research was supported by the US National Science Foundation (NSF Award No. OCE- 0926197, OCE-1233749, OCE-1357224), the Singapore National Research Foundation through the Singapore-MIT Alliance for Research and Technology (Award No. WBS 6916070), and the Center for Microbial Research and Education (NSF-OIA Award No. EF-0424599). In the last year of my studies, I was supported by a MIT-WHOI Joint Program Science Fellowship.
    Keywords: Ocean ; Chromium ; Seawater ; Isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close โŠ—
This website uses cookies and the analysis tool Matomo. More information can be found here...