ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Air-sea interaction  (1)
  • Beach recovery  (1)
  • Elsevier  (2)
  • Institute of Physics (IOP)
  • Molecular Diversity Preservation International
  • Oxford University Press
  • 2015-2019  (2)
  • 2000-2004
  • 1930-1934
  • 2018  (2)
Collection
Publisher
Years
  • 2015-2019  (2)
  • 2000-2004
  • 1930-1934
Year
  • 2018  (2)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing of Environment 209 (2018): 677-699, doi:10.1016/j.rse.2018.02.075.
    Description: We analyse ten years of QuikSCAT satellite surface winds to statistically characterize the spatio-temporal variability of the westward mountain-gap wind jets over the northern Red Sea. These wind jets bring relatively cold and dry air from the Arabian Desert, increasing heat loss and evaporation over the region similar to cold-air outbreaks from mid and subpolar latitudes. QuikSCAT captures the spatial structure of the wind jets and agrees well with in situ observations from a heavily instrumented mooring in the northern Red Sea. The local linear correlations between QuikSCAT and in situ winds are 0.96 (speed) and 0.85 (direction). QuikSCAT also reveals that cross-axis winds such as the mountain-gap wind jets are a major component of the regional wind variability. The cross-axis wind pattern appears as the second (or third) mode in the four vector Empirical Orthogonal Function analyses we performed, explaining between 6% to 11% of the wind variance. Westward wind jets are typical in winter, especially in December and January, but with strong interannual variability. Several jets can occur simultaneously and cover a large latitudinal range of the northern Red Sea, which we call large-scale westward events. QuikSCAT recorded 18 large-scale events over ten years, with duration between 3 to 8 days and strengths varying from 3–4 to 9–10 m/s. These events cause large changes in the wind stress curl pattern, imposing a remarkable sequence of positive and negative curl along the Red Sea main axis, which might be a wind forcing mechanism for the oceanic mesoscale circulation.
    Description: This work was supported by NSF grant OCE-1435665 and NASA grant NNX14AM71G.
    Keywords: QuikSCAT ; Air-sea interaction ; Wind jets ; Mountain gap ; Evaporation ; Heat loss
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Geomorphology 300 (2018): 189-202, doi:10.1016/j.geomorph.2017.08.004.
    Description: Hurricane Sandy at Fire Island, New York presented unique challenges in the quantification of storm impacts using traditional metrics of coastal change, wherein measured changes (shoreline, dune crest, and volume change) did not fully reflect the substantial changes in sediment redistribution following the storm. We used a time series of beach profile data at Fire Island, New York to define a new contour-based morphologic change metric, the Beach Change Envelope (BCE). The BCE quantifies changes to the upper portion of the beach likely to sustain measurable impacts from storm waves and capture a variety of storm and post-storm beach states. We evaluated the ability of the BCE to characterize cycles of beach change by relating it to a conceptual beach recovery regime, and demonstrated that BCE width and BCE height from the profile time series correlate well with established stages of recovery. We also investigated additional applications of this metric to capture impacts from storms and human modification by applying it to several post-storm historical datasets in which impacts varied considerably; Nor'Ida (2009), Hurricane Irene (2011), Hurricane Sandy (2012), and a 2009 community replenishment. In each case, the BCE captured distinctive upper beach morphologic change characteristic of these different beach building and erosional events. Analysis of the beach state at multiple profile locations showed spatial trends in recovery consistent with recent morphologic island evolution, which other studies have linked with sediment availability and the geologic framework. Ultimately we demonstrate a new way of more effectively characterizing beach response and recovery cycles to evaluate change along sandy coasts.
    Description: This work was supported by the 2013 Disaster Relief Appropriations Act, Department of Interior Hurricane Sandy Supplemental Project GS2-2B.
    Keywords: Barrier Island ; Coastal geomorphology ; Storm response ; Beach recovery
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...