ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Earthquake source observations  (2)
  • Seasonality  (2)
  • Elsevier  (2)
  • Oxford University Press  (2)
  • Institute of Physics (IOP)
  • Molecular Diversity Preservation International
  • 2015-2019  (4)
  • 2005-2009
  • 1930-1934
  • 2018  (4)
Sammlung
Verlag/Herausgeber
  • Elsevier  (2)
  • Oxford University Press  (2)
  • Institute of Physics (IOP)
  • Molecular Diversity Preservation International
Erscheinungszeitraum
  • 2015-2019  (4)
  • 2005-2009
  • 1930-1934
Jahr
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Regional Studies in Marine Science 18 (2018): 1-10, doi:10.1016/j.rsma.2017.12.004.
    Beschreibung: The variations of temperature and salinity in the Sudanese coastal zone of the Red Sea are studied for the first time using measurements acquired from survey cruises during 2009–2013 and from a mooring during 2014–2015. The measurements show that temperature and salinity variability above the permanent pycnocline is dominated by seasonal signals, similar in character to seasonal temperature and salinity oscillations observed further north on the eastern side of the Red Sea. Using estimates of heat flux, circulation and horizontal temperature/salinity gradients derived from a number of sources, we determined that the observed seasonal signals of temperature and salinity are not the product of local heat and mass flux alone, but are also due to alongshore advection of waters with spatially varying temperature and salinity. As the temperature and salinity gradients, characterized by warmer and less saline water to the south, exhibit little seasonal variation, the seasonal salinity and temperature variations are closely linked to an observed seasonal oscillation in the along-shore flow, which also has a mean northward component. We find that the inclusion of the advection terms in the heat and mass balance has two principal effects on the computed temperature and salinity series. One is that the steady influx of warmer and less saline water from the south counteracts the long-term trend of declining temperatures and rising salinities computed with only the local surface flux terms, and produces a long-term steady state in temperature and salinity. The second effect is produced by the seasonal alongshore velocity oscillation and most profoundly affects the computed salinity, which shows no seasonal signal without the inclusion of the advective term. In both the observations and computed results, the seasonal salinity signal lags that of temperature by roughly 3 months.
    Beschreibung: The SPS surveys were funded by the Norwegian Norad’s Program for Master Studies and organized by IMR–RSU in Port Sudan. The central Red Sea mooring data were acquired as part of a WHOI–KAUST collaboration funded by Award Nos. USA00001, USA00002, and KSA00011 to the WHOI by the KAUST in the Kingdom of Saudi Arabia. The work of I. Skjelvan and A.M. Omar was partly supported by the Research Council of Norway through the MIMT Center for Research-based Innovation. This work is part of a Ph.D. project at GFI–UiB funded by the Norwegian Quota program .
    Schlagwort(e): Coastal Red Sea ; Temperature ; Salinity ; Time series ; Seasonality ; Alongshore advection
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Authors, 2018. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 215 (2018): 1072–1087, doi:10.1093/gji/ggy203.
    Beschreibung: An earthquake rupture process can be kinematically described by rupture velocity, duration and spatial extent. These key kinematic source parameters provide important constraints on earthquake physics and rupture dynamics. In particular, core questions in earthquake science can be addressed once these properties of small earthquakes are well resolved. However, these parameters of small earthquakes are poorly understood, often limited by available data sets and methodologies. The Incorporated Research Institutions for Seismology Community Wavefield Experiment in Oklahoma deployed ∼350 three-component nodal stations within 40 km2 for a month, offering an unprecedented opportunity to test new methodologies for resolving small earthquake finite source properties in high resolution. In this study, we demonstrate the power of the nodal data set to resolve the variations in the seismic wavefield over the focal sphere due to the finite source attributes of an M2 earthquake within the array. The dense coverage allows us to tightly constrain rupture area using the second moment method even for such a small earthquake. The M2 earthquake was a strike-slip event and unilaterally propagated towards the surface at 90 per cent local S-wave speed (2.93 km s−1). The earthquake lasted ∼0.019 s and ruptured Lc ∼70 m and Wc ∼45 m. With the resolved rupture area, the stress-drop of the earthquake is estimated as 7.3 MPa for Mw 2.3. We demonstrate that the maximum and minimum bounds on rupture area are within a factor of two, much lower than typical stress-drop uncertainty, despite a suboptimal station distribution. The rupture properties suggest that there is little difference between the M2 Oklahoma earthquake and typical large earthquakes. The new three-component nodal systems have great potential for improving the resolution of studies of earthquake source properties.
    Beschreibung: WF is currently supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. JM was partially supported by SCEC grant #17177 at Woods Hole Oceanographic Institution. This research was supported by the Southern California Earthquake Center (Contribution No. 8014). SCEC is funded by NSF Cooperative Agreement EAR-1033462 and USGS Cooperative Agreement G12AC20038.
    Schlagwort(e): Inverse theory ; Waveform inversion ; Body waves ; Earthquake dynamics ; Earthquake source observations ; Seismic instruments
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Author(s), 2018. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 214 (2018): 2224–2235, doi:10.1093/gji/ggy201.
    Beschreibung: The key kinematic earthquake source parameters: rupture velocity, duration and area, shed light on earthquake dynamics, provide direct constraints on stress drop, and have implications for seismic hazard. However, for moderate and small earthquakes, these parameters are usually poorly constrained due to limitations of the standard analysis methods. Numerical experiments by Kaneko and Shearer demonstrated that standard spectral fitting techniques can lead to roughly one order of magnitude variation in stress-drop estimates that do not reflect the actual rupture properties even for simple crack models. We utilize these models to explore an alternative approach where we estimate the rupture area directly. For the suite of models, the area averaged static stress drop is nearly constant for models with the same underlying friction law, yet corner-frequency-based stress-drop estimates vary by a factor of 5–10 even for noise-free data. Alternatively, we simulated inversions for the rupture area as parametrized by the second moments of the slip distribution. A natural estimate for the rupture area derived from the second moments is A = πLcWc, where Lc and Wc are the characteristic rupture length and width. This definition yields estimates of stress drop that vary by only 10 per cent between the models but are slightly larger than the true area averaged values. We simulate inversions for the second moments for the various models and find that the area can be estimated well when there are at least 15 available measurements of apparent duration at a variety of take-off angles. The improvement compared to azimuthally averaged corner-frequency-based approaches results from the second moments accounting for directivity and removing the assumption of a circular rupture area, both of which bias the standard approach. We also develop a new method that determines the minimum and maximum values of rupture area that are consistent with a particular data set at the 95 per cent confidence level. For the Kaneko and Shearer models with 20+ randomly distributed observations and ∼10 per cent noise levels, we find that the maximum and minimum bounds on rupture area typically vary by a factor of two and that the minimum stress drop is often more tightly constrained than the maximum.
    Beschreibung: This work was supported by USGS NEHRP Award G17AP00029. The research was supported by the Southern California Earthquake Center (SCEC; Contribution No. 8013). SCEC is funded by NSF Cooperative Agreement EAR-1033462 and USGS Cooperative Agreement G12AC20038. YK was supported by both public funding from the Government of New Zealand and the Royal Society of New Zealand’s Rutherford Discovery Fellowship.
    Schlagwort(e): Earthquake dynamics ; Earthquake source observations ; Body waves
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecological Modelling 368 (2018): 357-376, doi:10.1016/j.ecolmodel.2017.12.010.
    Beschreibung: Despite diel and seasonal vertical migrations (DVM and SVM) of high-latitude zooplankton have been studied since the late-19th century, questions still remain about the influence of environmental seasonality on vertical migration, and the combined influence of DVM and SVM on zooplankton fitness. Toward addressing these, we developed a model for simulating DVM and SVM of high-latitude herbivorous copepods in high spatio-temporal resolution. In the model, a unique timing and amplitude of DVM and SVM and its ontogenetic trajectory were defined as a vertical strategy. Growth, survival and reproductive performances of numerous vertical strategies hardwired to copepods spawned in different times of the year were assessed by a fitness estimate, which was heuristically maximized by a Genetic Algorithm to derive the optimal vertical strategy for a given model environment. The modelled food concentration, temperature and visual predation risk had a significant influence on the observed vertical strategies. Under low visual predation risk, DVM was less pronounced, and SVM and reproduction occurred earlier in the season, where capital breeding played a significant role. Reproduction was delayed by higher visual predation risk, and copepods that spawned later in the season used the higher food concentrations and temperatures to attain higher growth, which was efficiently traded off for survival through DVM. Consequently, the timing of SVM did not change much from that predicted under lower visual predation risk, but the body and reserve sizes of overwintering stages and the importance of capital breeding diminished. Altogether, these findings emphasize the significance of DVM in environments with elevated visual predation risk and shows its contrasting influence on the phenology of reproduction and SVM, and moreover highlights the importance of conducting field and modeling work to study these migratory strategies in concert.
    Beschreibung: This project was funded by VISTA (project no. 6165), a basic research program in collaboration between The Norwegian Academy of Science and Letters and Statoil. ØV received funding from the Fulbright Arctic Initiative.
    Schlagwort(e): Vertical migration ; Seasonality ; Phenology ; Optimization model ; Genetic algorithm ; Habitat choice
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...