ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Boundary currents
  • Ocean circulation
  • Elsevier  (1)
  • Sears Foundation for Marine Research  (1)
  • Institute of Physics
  • Springer Nature
  • 2025-2025
  • 2015-2019  (2)
  • 1975-1979
  • 2018  (2)
Collection
Publisher
Years
  • 2025-2025
  • 2015-2019  (2)
  • 1975-1979
Year
  • 2018  (2)
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Modelling 121 (2018): 49-75, doi:10.1016/j.ocemod.2017.11.008.
    Description: Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
    Description: EvS has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 715386). This research for PJW was supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. Funding for HFD was provided by Grant No. DE-SC0012457 from the US Department of Energy. PB acknowledges support for this work from NERC grant NE/R011567/1. SFG is supported by NERC National Capability funding through the Extended Ellett Line Programme.
    Keywords: Ocean circulation ; Lagrangian analysis ; Connectivity ; Particle tracking ; Future modelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2017. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 75 (2017): 605-639, doi:10.1357/002224017822109505.
    Description: Shipboard hydrographic and velocity sections are used to quantify aspects of the North Icelandic Jet (NIJ), which transports dense overflow water to Denmark Strait, and the North Icelandic Irminger Current (NIIC), which imports Atlantic water to the Iceland Sea. The mean transports of the two currents are comparable, in line with previous notions that there is a local overturning cell in the Iceland Sea that transforms the Atlantic water to dense overflow water. As the NIJ and NIIC flow along the north side of Iceland, they appear to share a common front when the bottom topography steers them close together, but even when they are separate there is a poleward flow inshore of the NIJ. The interannual variability in salinity of the inflowing NIIC is in phase with that of the outflowing NIJ. It is suggested, however, that the NIIC signal does not dictate that of the NIJ. Instead, the combination of liquid and solid freshwater flux from the east Greenland boundary can account for the observed net freshening of the NIIC to the NIJ for the densest half of the overturning circulation in the northwest Iceland Sea. This implies that the remaining overturning must occur in a different geographic area, consistent with earlier model results. The year-to-year variability in salinity of the NIJ can be explained by applying annual anomalies of evaporation minus precipitation over the Iceland Sea to a one-dimensional mixing model. These anomalies vary in phase with the wind stress curl over the North Atlantic subpolar gyre, which previous studies have shown drives the interannual variation in salinity of the inflowing NIIC.
    Description: Funding for the project was provided by the National Science Foundation under grants OCE-1558742 (RSP, MAS, DJT, CN), OCE-1433170 (MAS), and OCE-0959381 (DM); the Norwegian Research Council under grant agreement no. 231647 (KV); the Bergen Research Foundation (KV); the European Union Seventh Framework Programme (FP7 2007-2013) under grant agreement 308299 (NACLIM project, KV, HV, and SJ); and the Natural Sciences and Engineering Research Council of Canada (GWKM).
    Keywords: Boundary currents ; Overturning circulation ; Overflow water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...