ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cooperatives  (2)
  • Numerical modeling  (2)
  • Elsevier  (2)
  • Oxford University Press  (2)
  • 2015-2019  (4)
  • 1945-1949
  • 2017  (4)
  • 1
    Publication Date: 2017-01-05
    Description: Commodity-equity return co-movements rose dramatically during the Great Recession. This development took place following what has been dubbed the "financialization" of commodity markets. We first document changes since 1995 in the relative importance of financial institutions’ activity in agricultural futures markets. We then use a structural vector autoregression (VAR) model to ascertain the role of that activity in explaining correlations between weekly grain, livestock, and equity returns from 1995–2015. We provide robust evidence that, accounting for shocks that are idiosyncratic to agricultural markets, world business cycle shocks have a substantial and long-lasting impact on the latter’s co-movements with financial markets. In contrast, changes in the intensity of financial speculation have an impact on cross-market return linkages that is shorter-lived and not statistically significant in all model specifications.
    Keywords: G12 - Asset Pricing ; Trading volume ; Bond Interest Rates, G13 - Contingent Pricing ; Futures Pricing, Q11 - Aggregate Supply and Demand Analysis ; Prices, Q13 - Agricultural Markets and Marketing ; Cooperatives ; Agribusiness
    Print ISSN: 0002-9092
    Electronic ISSN: 1467-8276
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-05
    Description: This article considers changes in the perception and avoidance behavior of food risks over time. In Japan, consumers’ concerns about the risks of radiation exposure via food consumption rose rapidly after the accident at the Fukushima Daiichi Nuclear Power Station in 2011. We conducted choice experiment surveys three months, seven months, and eleven months after the Fukushima accident and simulated the conditional means of willingness to pay (WTP) for avoiding radiation exposure via food consumption in each survey period. The results show that although the characteristics of changes in averting behaviors vary depending on the type of food, the heterogeneity in WTP values for avoiding food risk tends to reduce (broaden) when their magnitude decreases (increases).
    Keywords: Q13 - Agricultural Markets and Marketing ; Cooperatives ; Agribusiness, Q18 - Agricultural Policy ; Food Policy, Q51 - Valuation of Environmental Effects
    Print ISSN: 0002-9092
    Electronic ISSN: 1467-8276
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Continental Shelf Research 138 (2017): 1-18, doi:10.1016/j.csr.2017.02.003.
    Description: Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on October 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaluate. These regions provide a framework for the coastal zone, are important for navigation, aggregate resources, marine ecosystems, and coastal evolution. Here we provide unprecedented perspective regarding regional inner continental shelf sediment dynamics based on both observations and numerical modeling over time scales associated with these types of large storm events. Oceanographic conditions and seafloor morphologic changes are evaluated using both a coupled atmospheric-ocean-wave-sediment numerical modeling system that covered spatial scales ranging from the entire US east coast (1000 s of km) to local domains (10 s of km). Additionally, the modeled response for the region offshore of Fire Island, NY was compared to observational analysis from a series of geologic surveys from that location. The geologic investigations conducted in 2011 and 2014 revealed lateral movement of sedimentary structures of distances up to 450 m and in water depths up to 30 m, and vertical changes in sediment thickness greater than 1 m in some locations. The modeling investigations utilize a system with grid refinement designed to simulate oceanographic conditions with progressively increasing resolutions for the entire US East Coast (5-km grid), the New York Bight (700-m grid), and offshore of Fire Island, NY (100-m grid), allowing larger scale dynamics to drive smaller scale coastal changes. Model results in the New York Bight identify maximum storm surge of up to 3 m, surface currents on the order of 2 ms−1 along the New Jersey coast, waves up to 8 m in height, and bottom stresses exceeding 10 Pa. Flow down the Hudson Shelf Valley is shown to result in convergent sediment transport and deposition along its axis. Modeled sediment redistribution along Fire Island showed erosion across the crests of inner shelf sand ridges and sedimentation in adjacent troughs, consistent with the geologic observations.
    Description: This research was funded by the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, and conducted by the Coastal Change Processes Project. This research was supported in part by the Department of the Interior Hurricane Sandy Recovery program.
    Keywords: Shoreface connected sand ridges ; Sediment transport ; Fire Island, NY ; Hurricane Sandy ; Inner shelf ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Computers & Geosciences 100 (2017): 76–86, doi:10.1016/j.cageo.2016.12.010.
    Description: Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.
    Description: This study was part of the Estuarine Physical Response to Storms project (GS2-2D), supported by the Department of Interior Hurricane Sandy Recovery program.
    Keywords: Flexible aquatic vegetation ; Coastal hydrodynamics ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...