ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon  (2)
  • Seismology
  • John Wiley & Sons  (2)
  • 2015-2019  (2)
  • 1950-1954
  • 1935-1939
  • 2017  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 512–530, doi:10.1002/2016PA003072.
    Description: The carbon isotope composition (δ13C) of seawater provides valuable insight on ocean circulation, air-sea exchange, the biological pump, and the global carbon cycle and is reflected by the δ13C of foraminifera tests. Here more than 1700 δ13C observations of the benthic foraminifera genus Cibicides from late Holocene sediments (δ13CCibnat) are compiled and compared with newly updated estimates of the natural (preindustrial) water column δ13C of dissolved inorganic carbon (δ13CDICnat) as part of the international Ocean Circulation and Carbon Cycling (OC3) project. Using selection criteria based on the spatial distance between samples, we find high correlation between δ13CCibnat and δ13CDICnat, confirming earlier work. Regression analyses indicate significant carbonate ion (−2.6 ± 0.4) × 10−3‰/(μmol kg−1) [CO32−] and pressure (−4.9 ± 1.7) × 10−5‰ m−1 (depth) effects, which we use to propose a new global calibration for predicting δ13CDICnat from δ13CCibnat. This calibration is shown to remove some systematic regional biases and decrease errors compared with the one-to-one relationship (δ13CDICnat = δ13CCibnat). However, these effects and the error reductions are relatively small, which suggests that most conclusions from previous studies using a one-to-one relationship remain robust. The remaining standard error of the regression is generally σ ≅ 0.25‰, with larger values found in the southeast Atlantic and Antarctic (σ ≅ 0.4‰) and for species other than Cibicides wuellerstorfi. Discussion of species effects and possible sources of the remaining errors may aid future attempts to improve the use of the benthic δ13C record.
    Description: U.S. National Science Foundation Grant Numbers: 1634719, 0926735, 1125181; Swiss National Science Foundation Grant Numbers: PP00P2_144811, 200021_163003; Canadian Institute for Advanced Research (CIFAR); Canadian Foundation for Innovation (CFI); Natural Sciences and Engineering Research Council (NSERC)
    Description: 2017-12-03
    Keywords: Carbon ; Isotopes ; Benthic ; Foraminifera ; Calibration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 3696–3714, doi:10.1002/2016JC012460.
    Description: We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d−1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d−1 with mean-weighted wind speed of 6.4 m s−1. We show how ice cover changes the mixed-layer radon budget, and yields an “effective gas transfer velocity.” We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.
    Description: NSF Arctic Natural Sciences program Grant Number: 1203558
    Description: 2017-11-05
    Keywords: Radon-deficit ; Air-sea gas exchange ; Sea ice ; Gas transfer velocity ; Air-sea flux ; Carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...