ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (180)
  • Elsevier  (180)
  • 2015-2019  (180)
  • 1975-1979
  • 2017  (180)
  • 1
    Publication Date: 2024-03-22
    Description: Highlights • Re-organization of the West Pacific Warm Pool at ~ 1.7 – 1.35 Ma. • West Pacific Warm Pool and South Pacific Convergence Zone located further to the NE prior to ~ 1.5 Ma. • High amplitude variations at thermocline and deep thermocline depths after ~ 1.5 Ma. • West Pacific Warm Pool thermocline dynamics linked to southern-sourced mode waters. Abstract The internal development of the tropical West Pacific Warm Pool and its interaction with high latitude ocean regions on geological timescales is only poorly constrained. Based on two newly recovered sediment cores from the southeastern margin of the West Pacific Warm Pool (northern and southern Manihiki Plateau), we provide new aspects on the dynamically interacting ocean circulation at surface, subsurface, thermocline, and deep thermocline levels during the Pleistocene (~ 2.5–0.5 Ma). Notably, the variability of thermocline and deep thermocline (~ 150–400 m water depth) foraminiferal Mg/Ca-based temperatures with up to ~ 6 °C amplitude variations exceeds those at shallower depths (down to ~ 120 m) with only ~ 2–3 °C temperature variations. A major gradual reorganization of the West Pacific Warm Pool oceanography occurred during the transitional time period of ~ 1.7–1.35 Ma. Prior to ~ 1.7 Ma, pronounced meridional and latitudinal gradients in sea-surface to subsurface ocean properties point to the eastward displacement of the West Pacific Warm Pool boundaries, with the South Pacific Convergence Zone being shifted further northeastward across Manihiki Plateau. Simultaneously, the low amplitude variations of thermocline and deep thermocline temperatures refer to an overall deep and stable thermocline. The meridional and zonal gradients in sea-surface and subsurface ocean properties within the West Pacific Warm Pool reveal a pronounced change after 1.5 Ma, leading to a more southward position of the warm South Pacific Convergence Zone between ~ 1.35–0.9 Ma and ~ 0.75–0.5 Ma. Synchronous to the changes in the upper ocean, the deeper water masses experienced high amplitude variations in temperature, most prominently since ~ 1.5 Ma. This and the dynamically changing thermocline were most likely associated to the impact of southern-sourced mode waters, which might have developed coincidently with the emergence of the East Pacific Cold Tongue and high latitude sea-surface cooling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-31
    Description: Highlights • Pronounced northeastern Greenland Ice Sheet retreat during early MIS5e. • Downstream effect of Greenland-derived meltwater. • Climatic decoupling between the Nordic Seas, the North Atlantic and the Labrador Sea. • Meltwater event during late MIS5e. Abstract Proximal evidence of the surface ocean response to size reduction of the Greenland Ice Sheet (GIS) during the Last Interglacial (MIS5e) and preceding glacial termination (T2) remains largely elusive. Using a new sediment record from the western Iceland Sea, the behavior of the northeastern GIS and its relation to the subpolar North Atlantic surface hydrography is examined. Extremely light oxygen isotopic (δ18O) values are found off central East Greenland during early MIS5e and point to enhanced meltwater release, potentially from the northeastern sector of the GIS. Data from downstream the cold East Greenland Current (EGC) and its eastward branches suggest a far-reaching effect of this meltwater not only in the Nordic Seas but also in the SE Labrador Sea. In particular, whereas an early MIS5e warming (at ∼128.5–126.5 ka) in the two regions coincided with the relative reduction of meltwater input into the EGC, the subsequent cooling noted at ∼126.5 ka followed a renewed major freshwater event off central East Greenland. Our data further indicate persistent freshwater influence from the East Greenland margin over the entire MIS5e interval and, in addition, also reveal a late MIS5e meltwater event. The latter event occurred just prior to the last glacial inception and emphasizes the importance of Greenland meltwater as forcing factor on Interglacial climates.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-19
    Description: Trace element partition coefficients between anorthitic plagioclase and basaltic melts (D) have been determined experimentally at 0.6 GPa and 1350–1400 °C in a lunar high-Ti picritic glass and a mid-ocean ridge basalt (MORB). Plagioclases with 98 mol% and 86 mol% anorthite were produced in the lunar picritic melt and MORB melt, respectively. Based on the new experimental partitioning data and those selected from the literature, we developed parameterized lattice strain models for the partitioning of monovalent (Na, K, Li), divalent (Ca, Mg, Ba, Sr, Ra) and trivalent (REE and Y) cations between plagioclase and silicate melt. Through the new models we showed that the partitioning of these trace elements in plagioclase depends on temperature, pressure, and the abundances of Ca and Na in plagioclase. Particularly, Na content in plagioclase primarily controls divalent element partitioning, while temperature and Ca content in plagioclase are the dominant factors for REE partitioning in plagioclase. From these models, we also derived a new expression for DRa/DBa that can be used for Ra-Th dating on volcanic plagioclase phenocrysts, and a new model for plagioclase-melt noble gas partitioning. Applications of these partitioning models to fractional crystallization of MORB and lunar magma ocean (LMO) indicate that (1) the competing effect of temperature and plagioclase composition leads to small variations of plagioclase-melt DREE during MORB differentiation, but (2) the temperature effect is especially significant and can vary anorthite-melt DREE by over one order of magnitude during LMO solidification. Temperature and plagioclase composition have to be considered when modeling the chemical differentiation of mafic to felsic magmas involving plagioclase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-04
    Description: While the distribution patterns of cold-water corals, such as Paragorgia arborea, have received increasing attention in recent studies, little is known about their in situ activity patterns. In this paper, we examine polyp activity in P. arborea using machine learning techniques to analyze high-resolution time series data and photographs obtained from an autonomous lander cluster deployed in the Stjernsund, Norway. An interactive illustration of the models derived in this paper is provided online as supplementary material. We find that the best predictor of the degree of extension of the coral polyps is current direction with a lag of 3h. Other variables that are not directly associated with water currents, such as temperature and salinity, offer much less information concerning polyp activity. Interestingly, the degree of polyp extension can be predicted more reliably by sampling the laminar flows in the water column above the measurement site than by sampling the more turbulent flows in the direct vicinity of the corals. Our results show that the activity patterns of the P. arborea polyps are governed by the strong tidal current regime of the Stjernsund. It appears that P. arborea does not react to shorter changes in the ambient current regime but instead adjusts its behavior in accordance with the large-scale pattern of the tidal cycle itself in order to optimize nutrient uptake.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-04
    Description: To successfully manage marine fisheries using an ecosystem-based approach, long-term predictions of fish stock development considering changing environmental conditions are necessary. Such predictions can be provided by end-to-end ecosystem models, which couple existing physical and biogeochemical ocean models with newly developed spatially-explicit fish stock models. Typically, individual-based models (IBMs) and models based on advection-diffusion-reaction (ADR) equations are employed for the fish stock models. In this paper, we present a novel fish stock model called SPRAT for end-to-end ecosystem modeling based on population balance equations (PBEs) that combines the advantages of IBMs and ADR models while avoiding their main drawbacks. SPRAT accomplishes this by describing the modeled ecosystem processes from the perspective of individuals while still being based on partial differential equations. We apply the SPRAT model to explore a well-documented regime shift observed on the eastern Scotian Shelf in the 1990s from a cod-dominated to a herring-dominated ecosystem. Model simulations are able to reconcile the observed multitrophic dynamics with documented changes in both fishing pressure and water temperature, followed by a predator–prey reversal that may have impeded recovery of depleted cod stocks. We conclude that our model can be used to generate new hypotheses and test ideas about spatially interacting fish populations, and their joint responses to both environmental and fisheries forcing.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-09-23
    Description: Highlights • Method and application to improve digital soil maps of silt and clay in China • Within the framework of a DSM approach we derived spatial uncertainties. • Spatial uncertainty is based on randomized decision trees. • Model calibration set is refined by purposive sampling in area of high uncertainty. • Method and map refinement is approved using accuracy and uncertainty measures. Digital soil mapping (DSM) products represent estimates of spatially distributed soil properties. These estimations comprise an element of uncertainty that is not evenly distributed over the area covered by DSM. If we quantify the uncertainty spatially explicit, this information can be used to improve the quality of DSM by optimizing the sampling design. This study follows a DSM approach using a Random Forest regression model, legacy soil samples, and terrain covariates to estimate topsoil silt and clay contents in a small catchment of 4.2 km2 in the Three Gorges Reservoir Area, Central China. We aim (i) to introduce a method to derive spatial uncertainty, and (ii) to improve the initial DSM approaches by additional sampling that is guided by the spatial uncertainty. The proposed uncertainty measure is based on multiple realizations of individual and randomized decision tree models. We used the spatial uncertainty of the initial DSM approaches to stratify the study area and thereby to identify potential sampling areas of high uncertainties. Further, we tested how precisely available legacy samples cover the variability of the covariates within each potential sampling area to define the final sampling area and to apply a purposive sampling design. For the final Random Forest model calibration, we combined the legacy sample set with the additional samples. This uncertainty-driven DSM refinement was evaluated by comparing it to a second approach. In this second approach, the additional samples were replaced by a random sample set of the same size, obtained from the entire study area. For the comparative analysis, external, bootstrap-, and cross-validation was applied. The DSM approach using the uncertainty-driven refinement performed best. The averaged spatial uncertainty was reduced by 31% for silt and by 27% for clay compared to the initial DSM approach. Using external validation, the accuracy increased by the same proportions, while showing an overall accuracy of R2 = 0.59 for silt and R2 = 0.56 for clay.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-04-26
    Description: Highlights: • Model output indicates high connectivity between the eastern Baltic cod nursery grounds. • Variability of spatial juvenile distribution patterns affected by flow dynamics. • Trend of simulated occupied juvenile cod habitat have been declining over the last decades. • Condition of juveniles suggests density-dependence due to hypoxia-related decrease in suitable habitat. • Baltic cod recruitment indicator: habitat availability for juvenile settlement as a factor for recruitment. Abstract: In this study the drift of eastern Baltic cod larvae and juveniles spawned within the historical eastern Baltic cod spawning grounds was investigated by detailed drift model simulations for the years 1971–2010, to examine the spatio-temporal dynamics of environmental suitability in the nursery areas of juvenile cod settlement. The results of the long-term model scenario runs, where juvenile cod were treated as simulated passively drifting particles, enabled us to find strong indications for long-term variations of settlement and potentially the reproduction success of the historically important eastern Baltic cod nursery grounds. Only low proportions of juveniles hatched in the Arkona Basin and in the Gotland Basin were able to settle in their respective spawning ground. Ocean currents were either unfavorable for the juveniles to reach suitable habitats or transported the juveniles to nursery grounds of neighboring subdivisions. Juveniles which hatched in the Bornholm Basin were most widely dispersed and showed the highest settlement probability, while the second highest settlement probability and horizontal dispersal was observed for juveniles originating from the Gdansk Deep. In a long-term perspective, wind-driven transport of larvae/juveniles positively affected the settlement success predominately in the Bornholm Basin and in the Bay of Gdansk. The Bornholm Basin has the potential to contribute on average 54% and the Bay of Gdansk 11% to the production of juveniles in the Baltic Sea. Furthermore, transport of juveniles surviving to the age of settlement with origin in the Bornholm Basin contributed on average 13 and 11% to the total settlement in the Arkona Basin and in the Gdansk Deep, respectively. The time-series of the simulated occupied juvenile cod habitat in the Bornholm Basin and in the Gdansk Deep showed a similar declining trend as the Fulton’s K condition factor of demersal 1-group cod, which may confirm the importance of oxygen-dependent habitat availability and its effect on density dependence as a process relevant for recruitment success.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-14
    Description: Aquatic microbial communities are central to biogeochemical processes that maintain Earth’s habitability. However, there is a significant paucity of data collected from these species in their natural environment. To address this, a suite of ocean-deployable sampling and sensing instrumentation has been developed to retrieve, archive and analyse water samples and their microbial fraction using state of the art genetic assays. Recent deployments have shed new light onto the role microbes play in essential ocean processes and highlight the risks they may pose to coastal populations. Although current designs are generally too large, complex and expensive for widespread use, a host of emerging bio-analytical technologies have the potential to revolutionise this field and open new possibilities in aquatic microbial metrology.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 473 . pp. 269-278.
    Publication Date: 2022-01-19
    Description: Barium has been used as a biogeochemical tracer for alkalinity, productivity, and riverine inputs in the ocean, but its oceanic cycle remains poorly constrained. Barium stable isotope measurements may improve the use of Ba as a tracer and better constrain the cycling of Ba, but data are only available in limited regions of the oceans. In this study, we present dissolved seawater Ba isotopic compositions in a sample collection spanning the North Atlantic, South Atlantic, North Pacific and Southern Oceans. Compiled global upper-ocean [Ba] data show a relatively constant [Ba] (35–45nM) in the near-surface waters throughout the global ocean, with the exception of areas near river inputs or strong upwelling. The relatively uniform distribution of [Ba] in the upper ocean seawater indicates that Ba removal is slow relative to supply and mixing, and implies that near-surface Ba isotope values are controlled by basin-scale balances rather than by regional or short-term processes. Seawater Ba isotopic compositions show a large variation of δ138/134Bavalues ranging from 0.24 to 0.65�, and a tight relationship with [Ba]. This global relationship can be simply modelledassuming a primary deep Southern Ocean source for Ba to yield a maximum isotope fractionation of α=1.00058 ±0.00010(α=138/134Baseawater/138/134Baparticle). This suggested isotope fractionation during Ba removal from seawater is larger than implied by laboratory measurement during barite formation, suggesting additional fractionating phases or a two-stage fractionation process. Riverine input from the Rio de la Plata to the South Atlantic has a signature of δ138/134Ba=−0.06–0.11‰, which is too light to explain the heavy values (〉0.58‰) observed in the surface open ocean. Globally, the Ba isotope composition of the upper ocean waters is correlated with the fraction of Ba utilization at the basin scale (which varies from 〈15 to 70% at sites studied here). In the deep Atlantic Ocean, distinct δ138/134Basignals in the northern-sourced (≈0.45‰) and the southern-sourced water (≈0.25‰) trace mixing and allow identification of non-conservative behaviourof Ba, reflecting additional inputs or sinks of Ba during transport (most likely addition from sediment or hydrothermal). Ba isotopes may be useful to trace such inputs in the present and past ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-19
    Description: Highlights • A prototype device combining a focused ion beam and a femtosecond laser is presented. • A case study of fabricating cantilevers for micro-mechanical tests into cold rolled tungsten foils was performed. • No coarsening of the ultra-fine grained microstructure was found after femtosecond laser ablation. • A sample array consisting of 100 cantilevers with a dimension of 420 ×60 ×25 μm3 was processed in only half an hour. The focused ion beam technique has become a standard tool for micro-mechanical sample preparation in the last decade due to its high precision and general applicability in material removal. Besides disadvantages such as possible ion damage and high operation costs especially the characteristically small removal rates represent a bottleneck for this application. In contrast, femtosecond lasers provide material removal rates orders of magnitude higher, with small or ideally without thermal impact on the surrounding material. Hence, a combination of these two methods offers an ideal tool for time-efficient, micrometer-sized sample preparation. A prototype implementing this idea is presented here in combination with a case study. Cantilevers with a length of several hundred micrometers were machined into 25 μm, 50 μm and 100 μm thick, cold rolled tungsten foils. Scanning electron microscopy analyses reveal the influence of laser parameters and different scanning routines on the resulting sample quality and the effect of the laser pulse length (femtoseconds versus nanoseconds) on the ultra-fine grained microstructure. Finally, the performance for unprecedented rapid sample preparation is demonstrated with a sample array consisting of 100 cantilevers with a dimension of 420 ×60 ×25 μm3 processed in only half an hour, opening completely new testing possibilities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...