ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • In situ oceanic observations  (7)
  • Models and modeling
  • American Meteorological Society  (7)
  • 2015-2019  (7)
  • 2005-2009
  • 1980-1984
  • 1925-1929
  • 2019  (3)
  • 2017  (4)
Collection
Publisher
  • American Meteorological Society  (7)
Years
  • 2015-2019  (7)
  • 2005-2009
  • 1980-1984
  • 1925-1929
Year
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Semper, S., Vage, K., Pickart, R. S., Valdimarsson, H., Torres, D. J., & Jonsson, S. The emergence of the North Icelandic Jet and its evolution from northeast Iceland to Denmark Strait. Journal of Physical Oceanography, 49(10), (2019): 2499-2521, doi:10.1175/JPO-D-19-0088.1.
    Description: The North Icelandic Jet (NIJ) is an important source of dense water to the overflow plume passing through Denmark Strait. The properties, structure, and transport of the NIJ are investigated for the first time along its entire pathway following the continental slope north of Iceland, using 13 hydrographic/velocity surveys of high spatial resolution conducted between 2004 and 2018. The comprehensive dataset reveals that the current originates northeast of Iceland and increases in volume transport by roughly 0.4 Sv (1 Sv ≡ 106 m3 s−1) per 100 km until 300 km upstream of Denmark Strait, at which point the highest transport is reached. The bulk of the NIJ transport is confined to a small area in Θ–S space centered near −0.29° ± 0.16°C in Conservative Temperature and 35.075 ± 0.006 g kg−1 in Absolute Salinity. While the hydrographic properties of this transport mode are not significantly modified along the NIJ’s pathway, the transport estimates vary considerably between and within the surveys. Neither a clear seasonal signal nor a consistent link to atmospheric forcing was found, but barotropic and/or baroclinic instability is likely active in the current. The NIJ displays a double-core structure in roughly 50% of the occupations, with the two cores centered at the 600- and 800-m isobaths, respectively. The transport of overflow water 300 km upstream of Denmark Strait exceeds 1.8 ± 0.3 Sv, which is substantially larger than estimates from a year-long mooring array and hydrographic/velocity surveys closer to the strait, where the NIJ merges with the separated East Greenland Current. This implies a more substantial contribution of the NIJ to the Denmark Strait overflow plume than previously envisaged.
    Description: Six different research vessels were involved in the collection of the data used in this study: RRS James Clark Ross, R/V Knorr, R/V Bjarni Sæmundsson, R/V Håkon Mosby, NRV Alliance, and R/V Kristine Bonnevie. We thank the captain and crew of each of these vessels for their hard work as well as the many watch standers who have sailed on the cruises and helped collect the measurements. We also thank Frank Bahr for processing the VMADCP data collected on NRV Alliance and Magnús Danielsen for the processing of the hydrographic data collected on R/V Bjarni Sæmundsson. We acknowledge Leah Trafford McRaven for assistance with Fig. 1 and two anonymous reviewers for their helpful comments, which improved the manuscript. Funding for the project was provided by the Bergen Research Foundation Grant BFS2016REK01 (K. Våge and S. Semper), the Norwegian Research Council under Grant Agreement 231647 (K. Våge), and the U.S. National Science Foundation Grants OCE-1259618 and OCE-1756361 (R. S. Pickart and D. J. Torres), as well as OCE-1558742 (R. S. Pickart). The dataset is available on PANGAEA under https://doi.pangaea.de/10.1594/PANGAEA.903535.
    Keywords: Ocean ; Continental shelf/slope ; Ocean circulation ; Transport ; Intermediate waters ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2479-2498, doi:10.1175/JPO-D-16-0167.1.
    Description: The generation of trapped and radiating internal tides around Izu‐Oshima Island located off Sagami Bay, Japan, is investigated using the three-dimensional Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier–Stokes Simulator (SUNTANS) that is validated with observations of isotherm displacements in shallow water. The model is forced by barotropic tides, which generate strong baroclinic internal tides in the study region. Model results showed that when diurnal K1 barotropic tides dominate, resonance of a trapped internal Kelvin wave leads to large-amplitude internal tides in shallow waters on the coast. This resonance produces diurnal motions that are much stronger than the semidiurnal motions. The weaker, freely propagating, semidiurnal internal tides are generated on the western side of the island, where the M2 internal tide beam angle matches the topographic slope. The internal wave energy flux due to the diurnal internal tides is much higher than that of the semidiurnal tides in the study region. Although the diurnal internal tide energy is trapped, this study shows that steepening of the Kelvin waves produces high-frequency internal tides that radiate from the island, thus acting as a mechanism to extract energy from the diurnal motions.
    Description: This study was supported by JST CREST Grant Number JPRMJCR12A6.
    Description: 2018-04-12
    Keywords: Pacific Ocean ; Internal waves ; Kelvin waves ; In situ oceanic observations ; Baroclinic models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2531-2543, doi:10.1175/JPO-D-17-0051.1.
    Description: Argo floats are used to investigate Labrador Sea overturning and its variability on seasonal time scales. This is the first application of Argo floats to estimate overturning in a deep-water formation region in the North Atlantic. Unlike hydrographic measurements, which are typically confined to the summer season, floats offer the advantage of collecting data in all seasons. Seasonal composite potential density and absolute geostrophic velocity sections across the mouth of the Labrador Sea assembled from float profiles and trajectories at 1000 m are used to calculate the horizontal and overturning circulations. The overturning exhibits a pronounced seasonal cycle; in depth space the overturning doubles throughout the course of the year, and in density space it triples. The largest overturning [1.2 Sv (1 Sv ≡ 106 m3 s−1) in depth space and 3.9 Sv in density space] occurs in spring and corresponds to the outflow of recently formed Labrador Sea Water. The overturning decreases through summer and reaches a minimum in winter (0.6 Sv in depth space and 1.2 Sv in density space). The robustness of the Argo seasonal overturning is supported by a comparison to an overturning estimate based on hydrographic data from the AR7W line.
    Description: NSF OCE-1459474 supported this work.
    Description: 2018-04-17
    Keywords: North Atlantic Ocean ; Meridional overturning circulation ; In situ oceanic observations ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 2185-2203, doi:10.1175/JTECH-D-16-0095.1.
    Description: This study presents amended procedures to process and map data collected by pressure-sensor-equipped inverted echo sounders (PIESs) in western boundary current regions. The modifications to the existing methodology, applied to observations of the Kuroshio from a PIES array deployed northeast of Luzon, Philippines, consist of substituting a hydrography-based mean travel time field for the PIES-based mean field and using two distinct gravest empirical mode (GEM) lookup tables across the front that separate water masses of South China Sea and North Pacific origin. In addition, this study presents a method to use time-mean velocities from acoustic Doppler current profilers (ADCPs) to reference (or “level”) the PIES-recorded pressures in order to obtain time series of absolute geostrophic velocity. Results derived from the PIES observations processed with the hydrography-based mean field and two GEMs are compared with hydrographic profiles sampled by Seagliders during the PIES observation period and with current velocity measured concurrently by a collocated ADCP array. The updated processing scheme leads to a 41% error decrease in the determination of the thermocline depth across the current, a 22% error decrease in baroclinic current velocity shear, and a 61% error decrease in baroclinic volume transports. The absolute volume transport time series derived from the leveled PIES array compares well with that obtained directly from the ADCPs with a root-mean-square difference of 3.0 Sv (1 Sv ≡ 106 m3 s–1), which is mainly attributed to the influence of ageostrophic processes on the ADCP-measured velocities that cannot be calculated from the PIES observations.
    Description: The authors are supported by the Office of Naval Research (ONR) Departmental Research Initiative entitled Origins of the Kuroshio and Mindanao Currents (ONR Grant N00014-10-1-0397). MA was supported by ONR Grants N00014-15-12593 and N00014-16-1-2668. CL was supported by ONR Grant N00014-10-0308. SJ was supported by MOST Grants NSC 101-2611-M-002-018-MY3, MOST 103-2611-M-002-011, and MOST 105-2119-M-002-042.
    Description: 2017-04-05
    Keywords: Boundary currents ; Data processing ; In situ oceanic observations ; Inverse methods ; Optimization ; Time series
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 1713-1721, doi:10.1175/JTECH-D-16-0258.1.
    Description: Data collected with acoustic Doppler current profilers installed on CTD rosettes and lowered through the water column [lowered ADCP (LADCP) systems] are routinely used to derive full-depth profiles of ocean velocity. In addition to the uncertainties arising from random noise in the along-beam velocity measurements, LADCP-derived velocities are commonly contaminated by bias errors due to imperfectly measured instrument attitude (heading, pitch, and roll). Of particular concern are the heading measurements, because it is not usually feasible to calibrate the internal ADCP compasses with the instruments installed on a CTD rosette, away from the magnetic disturbances of the ship. Heading data from dual-headed LADCP systems, which consist of upward- and downward-pointing ADCPs installed on the same rosette, commonly indicate heading-dependent compass errors with amplitudes exceeding 10°. In an attempt to reduce LADCP velocity errors, several dozen profiles of simultaneous LADCP and magnetometer/accelerometer data were collected in the Gulf of Mexico. Agreement between the LADCP profiles and simultaneous shipboard velocity measurements improves significantly when the former are processed with external attitude measurements. Another set of LADCP profiles with external attitude data was collected in a region of the Arctic Ocean where the horizontal geomagnetic field is too weak for the ADCP compasses to work reliably. Good agreement between shipboard velocity measurements and Arctic LADCP profiles collected at magnetic dip angles exceeding and processed with external attitude measurements indicate that high-quality velocity profiles can be obtained close to the magnetic poles.
    Description: Part of this research was made possible by a grant from the Gulf of Mexico Research Initiative to support the Ecosystem Impacts of Oil and Gas Inputs to the Gulf (ECOGIG-2) research consortium. Funding for acquisition of the 2015 Arctic data was provided by NSF (1203473 and 1249133) and NOAA (NA15OAR4310155) under the NABOS-II program.
    Keywords: Ocean ; Arctic ; Algorithms ; In situ oceanic observations ; Measurements ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(4), (2019): 1035-1053, doi:10.1175/JPO-D-18-0136.1.
    Description: Ocean stratification and the vertical extent of the mixed layer influence the rate at which the ocean and atmosphere exchange properties. This process has direct impacts for anthropogenic heat and carbon uptake in the Southern Ocean. Submesoscale instabilities that evolve over space (1–10 km) and time (from hours to days) scales directly influence mixed layer variability and are ubiquitous in the Southern Ocean. Mixed layer eddies contribute to mixed layer restratification, while down-front winds, enhanced by strong synoptic storms, can erode stratification by a cross-frontal Ekman buoyancy flux. This study investigates the role of these submesoscale processes on the subseasonal and interannual variability of the mixed layer stratification using four years of high-resolution glider data in the Southern Ocean. An increase of stratification from winter to summer occurs due to a seasonal warming of the mixed layer. However, we observe transient decreases in stratification lasting from days to weeks, which can arrest the seasonal restratification by up to two months after surface heat flux becomes positive. This leads to interannual differences in the timing of seasonal restratification by up to 36 days. Parameterizing the Ekman buoyancy flux in a one-dimensional mixed layer model reduces the magnitude of stratification compared to when the model is run using heat and freshwater fluxes alone. Importantly, the reduced stratification occurs during the spring restratification period, thereby holding important implications for mixed layer dynamics in climate models as well as physical–biological coupling in the Southern Ocean.
    Description: MdP acknowledges numerous research visits to the Department of Marine Science, University of Gothenburg, and a visit to Woods Hole Oceanographic Institution, which greatly enhanced this work. We thank SANAP and the captain and crew of the S.A. Agulhas II for their assistance in the deployment and retrieval of the gliders. We acknowledge the work of SAMERC-STS for housing, managing, and piloting the gliders. SS was supported by NRF-SANAP Grant SNA14071475720 and a Wallenberg Academy Fellowship (WAF 2015.0186). Lastly, SS thanks the numerous technical assistance, advice, and IOP hosting provided by Geoff Shilling and Craig Lee of the Applied Physics Laboratory, University of Washington.
    Description: 2020-04-11
    Keywords: Atmosphere-ocean interaction ; Fronts ; Oceanic mixed layer ; In situ oceanic observations ; Interannual variability ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 36(4), (2019): 733-744, doi:10.1175/JTECH-D-18-0050.1.
    Description: Sea-Bird Scientific SBE 41CP CTDs are used on autonomous floats in the global Argo ocean observing program to measure the temperature and salinity of the upper ocean. While profiling, the sensors are subject to dynamic errors as they profile through vertical gradients. Applying dynamic corrections to the temperature and conductivity data reduces these errors and improves sensor accuracy. A series of laboratory experiments conducted in a stratified tank are used to characterize dynamic errors and determine corrections. The corrections are adapted for Argo floats, and recommendations for future implementation are presented.
    Description: 2020-04-23
    Keywords: Data processing ; In situ oceanic observations ; Instrumentation/sensors ; oceanic ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...