ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Food Microbiology  (17)
  • Oxford University Press  (17)
  • American Geophysical Union (AGU)
  • American Institute of Physics
  • Annual Reviews
  • 2015-2019  (17)
  • 1980-1984
  • 1935-1939
  • 2016  (17)
  • 1
    Publication Date: 2016-07-24
    Description: Kefir is a fermented milk beverage consumed for nutritional and health tonic benefits in many parts of the world. It is produced by the fermentation of milk with a consortium of bacteria and yeast embedded within a polysaccharide matrix. This consortium is not well defined and can vary substantially between kefir grains. There are little data on the microbial stability of kefir grains, nor on interactions between microbes in the grain and in the milk. To study this, a grain was split, with one half of each stored at –20°C and the other half passaged repeatedly in whole unpasteurised milk. Grains passaged in the unpasteurised milk recovered vigour and acquired the yeast Kluyveromyces marxainus from the milk which was confirmed to be the same strain by molecular typing. Furthermore, these passaged grains produced kefir that was distinguished chemically and organoleptically from the stored grains. Some changes in ultrastructure were also observed by scanning electron microscopy. The study showed that kefir grains can acquire yeast from their environment and the final product can be influenced by these newly acquired yeasts. Kluyveromyces marxianus is considered to be responsible for some of the most important characteristics of kefir so the finding that this yeast is part of the less stable microbiota is significant.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-31
    Description: Two-component systems (TCS) allow a cell to elaborate a variety of adaptive responses to environment changes. The recently discovered CasK/R TCS plays a role in the optimal unsaturation of fatty acids necessary for cold adaptation of the foodborne-pathogen Bacillus cereus . Here, we showed that the promoter activity of the operon encoding this TCS was repressed during growth at low temperature in the stationary phase in the parental strain when compared to the casK/R mutant, suggesting that CasR negatively regulates the activity of its own promoter in these conditions. The promoter activity of the desA gene encoding the 5 fatty acid desaturase, providing unsaturated fatty acids (UFAs) required for low temperature adaptation, was repressed in the casK/R mutant grown at 12°C versus 37°C. This result suggests that CasK/R activates desA expression during B. cereus growth at low temperature, allowing an optimal unsaturation of the fatty acids. In contrast, desA expression was repressed during the lag phase at low temperature in presence of UFAs, in a CasK/R-independent manner. Our findings confirm that the involvement of this major TCS in B. cereus cold adaptation is linked to the upregulation of a fatty acid desaturase.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-12
    Description: Microcin N is a low-molecular weight, highly active antimicrobial peptide produced by uropathogenic Escherichia coli . In this study, the native peptide was expressed and purified from pGOB18 plasmid carrying E. coli in low yield. The pure peptide was characterized using mass spectrometry, N-terminal sequencing by Edman degradation as well as trypsin digestion. We found that the peptide is 74-residue long, cationic (+2 total charge), highly hydrophobic and consists of glycine as the first N-terminal residue. The minimum inhibitory concentration of the peptide against Salmonella enteritidis was found to be 150 nM. Evaluation of the solution conformation of the peptide using circular dichroism spectroscopy showed that the peptide is well folded in 40% trifluoroethanol with helical structure whereas the folded structure is lost in aqueous solution. To increase the yield of this potent peptide, we overexpressed GST-tagged microcin N using E. coli BL21. Recombinant GST-tagged microcin N was successfully expressed in E. coli BL21; however, the cleaved mature microcin N did not show activity against the indicator strain ( S. enterica ) most likely due to the extreme hydrophobic nature of the peptide. Efforts to produce active microcin N in large scale are discussed as this peptide has huge potential to be the next generation antimicrobial agent.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-15
    Description: Complement component 3 (C3) is one of the proteins associated with complement cascades. C3 plays an essential role in three different pathways—the alternative, classical and lectin pathways. It is well known that cytokines activate complement system and increase complement component C3 production. In the current study, we found that lipoteichoic acid isolated from Lactobacillus plantarum K8 (pLTA) inhibited tumor necrosis factor-alpha (TNF-α) or interferon-gamma (IFN-)-mediated C3 mRNA and protein expression in HaCaT cells. pLTA inhibited C3 expression through the inhibition of the phosphorylation of p65 and p38 in the TNF-α-treated cells, while the inhibition of STAT1/2 and JAK2 phosphorylation by pLTA contributed to the reduction of C3 in IFN--treated cells. When mice were pre-injected with pLTA followed by re-injection of TNF-α, serum C3 level was decreased as compared to TNF-α-injected only. Further studies revealed that membrane attack complex (MAC) increased by TNF-α injection was lessened in pLTA-pre-injected mice. A bactericidal assay using mouse sera showed that MAC activity in pLTA-pre-injected mice was lower than in TNF-α only-injected mice. These results suggest that pLTA can suppress inflammatory cytokine-mediated complement activation through the inhibition of C3 synthesis. pLTA application has the potential to alleviate complement-mediated diseases caused by excessive inflammation.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-04
    Description: Prophage insertions in Escherichia coli O157:H7 mlrA contribute to the low expression of curli fimbriae and biofilm observed in many clinical isolates. Varying levels of CsgD-dependent curli/biofilm expression are restored to strains bearing prophage insertions in mlrA by mutation of regulatory genes affecting csgD . Our previous study identified strong biofilm- and curli-producing variants in O157:H7 cultures that had lost the mlrA -imbedded prophage characteristic of the parent population, suggesting prophage excision as a mechanism for restoring biofilm properties. In this study, we compared genomic, transcriptomic and phenotypic properties of parent strain PA20 ( stx 1 , stx 2 ) and its prophage-cured variant, 20R2R ( stx 2 ), and confirmed the mechanism underlying the differences in biofilm formation.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-03
    Description: For Enterobacteriaceae such as Salmonella spp. and Escherichia coli , no unified interpretive resistance criteria exist for streptomycin, an epidemiologically important antibiotic. As part of the National Antimicrobial Resistance Monitoring System, we had previously used a minimum inhibitory concentration of ≥64 μg mL –1 as an epidemiological cutoff value (ECV) to define non-wild-type isolates. To identify whether this ECV correlated with genetic determinants of resistance, we performed whole-genome sequencing of 463 Salmonella and E. coli isolates to identify streptomycin resistance genotypes. From this analysis, we found that using a streptomycin resistance breakpoint of ≥64 μg mL –1 classified over 20% of strains possessing aadA or strA/strB resistance genes as wild-type. Therefore, to improve the concordance between genotypic and phenotypic data, we propose reducing the phenotypic cutoff values to ≥32 μg mL –1 for both Salmonella and E. coli , to be used widely as ECVs to categorize non-wild-type isolates.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-05-20
    Description: Bacillus cereus is a spore-forming, Gram-positive bacterium and is a major food-borne pathogen. A B. cereus -specific bacteriophage PBC4 was isolated from the soil of a stock farm, and its genome was analyzed. PBC4 belongs to the Siphoviridae family and has a genome consisting of 80 647-bp-long double-stranded DNA, including 123 genes and two tRNAs. LysPBC4, the endolysin of PBC4, has an enzymatically active domain (EAD) on its N-terminal region and a putative cell wall-binding domain (CBD) on its C-terminal region, respectively. Although the phage PBC4 showed a very limited host range, LysPBC4 could lyse all of the B. cereus strains tested. However, LysPBC4 did not kill other bacteria such as B. subtilis or Listeria , indicating that the endolysin has specific lytic activity against the B. cereus group species. Furthermore, LysPBC4_CBD fused with enhanced green fluorescent protein (EGFP) could decorate limited strains of B. cereus group, suggesting that the LysPBC4_CBD may be a promising material for specific detection of B. cereus .
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-05-20
    Description: Bacillus cereus is an important opportunistic foodborne pathogen. In the present work, a total of 306 milk and environmental samples were collected from 10 local dairy farms in Beijing, China. Of the 92 B. cereus -like isolates, 88 and 4 belonged to B. cereus and B. thuringiensis , respectively. The prevalence of B. cereus isolates in bedding, feces, feed, liquid manure and raw milk was 93.3%, 78.9%, 41.2%, 100.0% and 9.8%, respectively. Three main toxin genes nhe, hbl and ces were detected with rates of 100.0%, 78.3% and 1.1%, but no strain harbored cytK1 . The production of Nhe, Hbl and cereulide could be confirmed by specific monoclonal antibodies-based enzyme immunoassays in 94.6%, 70.7% and 1.1% of all isolates, respectively. Cytotoxicity tests were used to further corroborate the results of genetic and protein-based assays; 91.3% of the isolates showed cytotoxicity to Vero cells. All isolates were tested for antimicrobial resistance against 17 antibiotics. All isolates were resistant to lincomycin, retapamulin, tiamulin and valnemulin, while two strains were susceptible to ampicillin and ceftiofur. A total of 16 isolated strains were resistant to tetracycline. Since spores of B. cereus are not inactivated during manufacturing of most milk products, contamination of milk with B. cereus on the farm level may represent a potential hazard, particularly with respect to emetic toxin-producing strains.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-05-25
    Description: The effect of the bacteriocin-producing Lactobacillus sakei CRL1862 and its bacteriocin in the control of Listeria biofilm formation on industrial surfaces at 10°C was investigated. A screening among different Listeria species was performed allowing selecting L. monocytogenes FBUNT for its use as a biofilm producer on stainless steel (SS) and polytetrafluoroe-thylene (PTFE) surfaces. Three conditions were simulated to evaluate the ability of the bacteriocinogenic strain to displace, exclude and compete pathogen biofilm formation. Lactobacillus sakei CRL1862 effectively inhibited biofilm formation by L. monocytogenes FBUNT through the three assayed mechanisms, pathogen inhibition being more efficient on PTFE than on SS surface. Moreover, co-culture of L. monocytogenes FBUNT with the bacteriocin-producer displayed the highest efficacy reducing the pathogen by 5.54 ± 0.12 and 4.52 ± 0.01 on PTFE and SS, respectively. Industrially, the pre-treatment with L. sakei CRL1862 or its bacteriocin (exclusion) constitutes the most realistic way to prevent pathogen biofilm settlement. The use of bacteriocins and/or the bacteriocin-producer strain represents a safe and environmentally-friendly sanitation method to mitigate post-processing food contamination.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-04
    Description: The marine foodborne enteropathogen, Vibrio parahaemolyticus , has four putative catalase genes. Function of the katG -homologous genes, katG1 (VPA0768) and katG2 (VPA0453), was examined using gene deletion mutants, and compared with those of the katE -homologous genes, katE1 (VPA1418) and katE2 (VPA0305). Bacterial growth of katG1 was significantly delayed in the presence of 200–300 μM H 2 O 2 , and such inhibition was enhanced when incubation temperature was lowered from 37°C to 22°C. In the stationary phase, the katG1 strain was more susceptible to the lethal dosage of H 2 O 2 than the katE1 strain. The minimum inhibitory concentrations and minimum bactericidal concentrations revealed that katE1/katE2 strains were more susceptible to H 2 O 2 than the katG1/katG2 strains in exponential phase, while katG1 was more susceptible than the katE1/katE2 strains in the starved culture. This study demonstrated the chief antioxidative role of katG1 in the stationary phase and starved culture of V. parahaemolyticus , while katG1 and katG2 were also responsive to H 2 O 2 and cumene hydroperoxide in the exponential phase.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-04-10
    Description: Lactobacillus strains have been shown to adhere to the mucosal components of intestinal epithelial cells. However, established in vitro adhesion assays have several drawbacks in assessing the adhesion of new Lactobacillus strains. The present study aimed to compare the adhesion of four different Lactobacillus strains and select the most adherent microbe, based on in silico approach supported by in vitro results. The mucus-binding proteins in Lactobacillus acidophilus , L. plantarum, L. brevis and L. fermentum were identified and their capacities to interact with intestinal mucin were compared by molecular docking analysis. Lactobacillus acidophilus had the maximal affinity of binding to mucin with predicted free energy of –6.066 kcal mol –1 . Further, in vitro experimental assay of adhesion was performed to validate the in silico results. The adhesion of L. acidophilus to mucous secreting colon epithelial HT-29 MTX cells was highest at 12%, and it formed biofilm with maximum depth (Z = 84 μm). Lactobacillus acidophilus was determined to be the most adherent strain in the study. All the Lactobacillus strains tested in this study, displayed maximum affinity of binding to MUC3 component of mucus as compared to other gastrointestinal mucins. These findings may have importance in the design of probiotics and health care management.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-04-20
    Description: The bio-control of ethanol on Klebsiella pneumoniae on fresh coriander leaves for significantly reducing consumer health risk was investigated. Washed and sterilized leaves of coriander were inoculated with K. pneumoniae cultured in Trypticase Soy broth. Susceptibility of the K. pneumoniae to liquid- and evaporated vapor-phase ethanol (EVE) was then examined in vitro . Complete inhibition of K. pneumoniae was found with 18% (v/v) liquid ethanol. Exposure for 15 min to EVE (9.00 ± 0.8 mmol L –1 ) completely destroyed K. pneumoniae (4.04 ± 0.02 log CFU/ml) spread on Mueller Hilton agar at 30 ± 2°C. The effect of EVE with and without evaporated water vapor (EWV) on the susceptibility of K. pneumoniae on fresh coriander leaves was examined. While exposure to EVE affected the survival of K. pneumoniae , the degree of reduction depended on both the inoculation level and the EWV. Complete reduction of K. pneumoniae was achieved for the low inoculation level by EVE alone (37 ± 2% relative humidity; RH) but susceptibility was reduced with EWV (high RH; 80 ± 2%). Scanning electron microscope (SEM) images of inoculated coriander leaves confirm the effects of EVE in reducing levels of K. pneumoniae . Exposure to EVE alone proved an effective bio-control for K. pneumoniae on fresh coriander leaves.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-09-11
    Description: Lactobacillus acetotolerans is a hard-to-culture beer-spoilage bacterium capable of entering into the viable putative nonculturable (VPNC) state. As part of an initial strategy to investigate the phenotypic behavior of L. acetotolerans , draft genome sequencing was performed. Results demonstrated a total of 1824 predicted annotated genes, with several potential VPNC- and beer-spoilage-associated genes identified. Importantly, this is the first genome sequence of L. acetotolerans as beer-spoilage bacteria and it may aid in further analysis of L. acetotolerans and other beer-spoilage bacteria, with direct implications for food safety control in the beer brewing industry.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-12-29
    Description: Fermented pepper is one of the traditional Chinese fermented vegetables. The production mainly relies on the fermentation by natural microorganisms. This fermentation system is a unique and dynamic microecological environment, and involved microbial communities are very complex. In this study, 454 pyrosequencing was first used to investigate the fungal communities in fresh pepper and different fermentation phases. The results showed that fungal communities in fresh pepper (sample M_0) were more abundant than later fermented phases. Taxa in proportions 〉0.01% could be assigned to 21 different genera. Taxa in proportions 〉1% were Trichosporon 24.11%, Rhodotorula 7.4%, Cladosporium 4.26%, Debarvomvces 3.94%, Mucor 2.51% and Cryptococcus 1.86%. There were a large number of unknown fungi (47.99%) in the sample waiting to be identified. Along with the fermentation, microbial communities became less diverse. Hanseniaspora and Pichia became the dominant fungal genera, while Trichosporon decreased from a maximum 24.11% to a minimum 0.1%. On the seventh fermentation day, the percentage of Hanseniaspora reached 89.3%. On the 20th fermentation day, taxa in proportions 〉1% were Hanseniaspora 69.25%, Unclassified 12.23%, Pichia 8.95%, Debaryomyces 6.22% and Rhodotorula 1.31%.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-12-16
    Description: Bacteriophages (phages) or bacterial viruses have long been proposed as an alternative therapy against antibiotic-resistant bacteria such as Escherichia coli . Even though poorly documented in the scientific literature, a long clinical history of phage therapy in countries such as Russia and Georgia suggests potential value in the use of phages as antibacterial agents. Escherichia coli is responsible for a wide range of diseases, intestinal (diarrhoea) and extraintestinal (UTI, septicaemia, pneumoniae, meningitis), making it an ideal target for phage therapy. This review discusses the latest research focusing on the potential of phage therapy to tackle E. coli -related illnesses. No intact phages are approved in EU or USA for human therapeutic use, but many successful in vitro and in vivo studies have been reported. However, additional research focused on in vivo multispecies models and human trials are required if phage therapy targeting E. coli pathotypes can be a story with happy end.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-10-08
    Description: The contribution of antibiotic resistance originally selected for in the agricultural sector to resistance in human pathogens is not known exactly, but is unlikely to be negligible. It is estimated that 50% to 80% of all antibiotics used are applied in agriculture and the remainder for treating infections in humans. Since dosing regimens are less controlled in agriculture than in human health care, veterinary and environmental microbes are often exposed to sublethal levels of antibiotics. Exposure to sublethal drug concentrations must be considered a risk factor for de novo resistance, transfer of antimicrobial resistant (AMR) genes, and selection for already existing resistance. Resistant zoonotic agents and commensal strains carrying AMR genes reach the human population by a variety of routes, foodstuffs being only one of these. Based on the present knowledge, short treatments with the highest dose that does not cause unacceptable side-effects may be optimal for achieving therapeutic goals while minimizing development of resistance. Novel approaches such as combination or alternating therapy are promising, but need to be explored further before they can be implemented in daily practice.
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-10-08
    Description: The ability to serve as a delivery vehicle for various interesting biomolecules makes lactic acid bacteria (LAB) very useful in several applications. In the medical field, recombinant LAB expressing pathogenic antigens at different cellular locations have been used to elicit both mucosal and systemic immune responses. Expression–secretion vectors (ESVs) with a signal peptide (SP) are pivotal for protein expression and secretion. In this study, the genome sequence of Lactobacillus casei ATCC334 was explored for new SPs using bioinformatics tools. Three new SPs of the proteins Cwh, SurA and SP6565 were identified and used to construct an ESV based on our Escherichia coli–L. casei shuttle vector, pRCEID-LC13.9. Functional testing of these constructs with the green fluorescence protein (GFP) gene showed that they could secrete the GFP. The construct with CwhSP showed the highest GFP secretion. Consequently, CwhSP was selected to develop an ESV construct carrying a synthetic gene encoding the extracellular domain of the matrix 2 protein fused with the hepatitis B core antigen (M2e:HBc). This ESV was shown to efficiently express and secrete the M2e:HBc fusion protein. The identified SPs and the developed ESVs can be exploited for expression and secretion of homologous and heterologous proteins in L. casei .
    Keywords: Food Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...