ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (14)
  • Computational Methods  (14)
  • Oxford University Press  (14)
  • American Chemical Society (ACS)
  • Frontiers Media
  • National Academy of Sciences
  • PeerJ
  • 2015-2019  (14)
  • 1985-1989
  • 2016  (14)
  • Biology  (14)
  • Nature of Science, Research, Systems of Higher Education, Museum Science
  • Law
  • Natural Sciences in General
  • Energy, Environment Protection, Nuclear Power Engineering
Collection
  • Journals
  • Articles  (14)
Publisher
  • Oxford University Press  (14)
  • American Chemical Society (ACS)
  • Frontiers Media
  • National Academy of Sciences
  • PeerJ
Years
  • 2015-2019  (14)
  • 1985-1989
Year
Topic
  • Biology  (14)
  • Nature of Science, Research, Systems of Higher Education, Museum Science
  • Law
  • Natural Sciences in General
  • Energy, Environment Protection, Nuclear Power Engineering
  • 1
    Publication Date: 2016-06-21
    Description: The goal of pathway analysis is to identify the pathways that are significantly impacted when a biological system is perturbed, e.g. by a disease or drug. Current methods treat pathways as independent entities. However, many signals are constantly sent from one pathway to another, essentially linking all pathways into a global, system-wide complex. In this work, we propose a set of three pathway analysis methods based on the impact analysis, that performs a system-level analysis by considering all signals between pathways, as well as their overlaps. Briefly, the global system is modeled in two ways: (i) considering the inter-pathway interaction exchange for each individual pathways, and (ii) combining all individual pathways to form a global, system-wide graph. The third analysis method is a hybrid of these two models. The new methods were compared with DAVID, GSEA, GSA, PathNet, Crosstalk and SPIA on 23 GEO data sets involving 19 tissues investigated in 12 conditions. The results show that both the ranking and the P -values of the target pathways are substantially improved when the analysis considers the system-wide dependencies and interactions between pathways.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-09
    Description: Bioinformatic analysis often produces large sets of genomic ranges that can be difficult to interpret in the absence of genomic context. Goldmine annotates genomic ranges from any source with gene model and feature contexts to facilitate global descriptions and candidate loci discovery. We demonstrate the value of genomic context by using Goldmine to elucidate context dynamics in transcription factor binding and to reveal differentially methylated regions (DMRs) with context-specific functional correlations. The open source R package and documentation for Goldmine are available at http://jeffbhasin.github.io/goldmine .
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-28
    Description: CCCTC-binding factor (CTCF) is a multi-functional protein that is assigned various, even contradictory roles in the genome. High-throughput sequencing-based technologies such as ChIP-seq and Hi-C provided us the opportunity to assess the multivalent functions of CTCF in the human genome. The location of CTCF-binding sites with respect to genomic features provides insights into the possible roles of this protein. Here we present the first genome-wide survey and characterization of three important functions of CTCF: enhancer insulator, chromatin barrier and enhancer linker. We developed a novel computational framework to discover the multivalent functions of CTCF based on chromatin state and three-dimensional chromatin architecture. We applied our method to five human cell lines and identified ~46 000 non-redundant CTCF sites related to the three functions. Disparate effects of these functions on gene expression were found and distinct genomic features of these CTCF sites were characterized in GM12878 cells. Finally, we investigated the cell-type specificities of CTCF sites related to these functions across five cell types. Our study provides new insights into the multivalent functions of CTCF in the human genome.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-08
    Description: Existing methods for interpreting protein variation focus on annotating mutation pathogenicity rather than detailed interpretation of variant deleteriousness and frequently use only sequence-based or structure-based information. We present VIPUR, a computational framework that seamlessly integrates sequence analysis and structural modelling (using the Rosetta protein modelling suite) to identify and interpret deleterious protein variants. To train VIPUR, we collected 9477 protein variants with known effects on protein function from multiple organisms and curated structural models for each variant from crystal structures and homology models. VIPUR can be applied to mutations in any organism's proteome with improved generalized accuracy (AUROC .83) and interpretability (AUPR .87) compared to other methods. We demonstrate that VIPUR's predictions of deleteriousness match the biological phenotypes in ClinVar and provide a clear ranking of prediction confidence. We use VIPUR to interpret known mutations associated with inflammation and diabetes, demonstrating the structural diversity of disrupted functional sites and improved interpretation of mutations associated with human diseases. Lastly, we demonstrate VIPUR's ability to highlight candidate variants associated with human diseases by applying VIPUR to de novo variants associated with autism spectrum disorders.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-03
    Description: The sequential chain of interactions altering the binary state of a biomolecule represents the ‘information flow’ within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein–protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes—network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code ( http://www.NetDecoder.org ) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-01
    Description: It is being increasingly realized that nucleosome organization on DNA crucially regulates DNA–protein interactions and the resulting gene expression. While the spatial character of the nucleosome positioning on DNA has been experimentally and theoretically studied extensively, the temporal character is poorly understood. Accounting for ATPase activity and DNA-sequence effects on nucleosome kinetics, we develop a theoretical method to estimate the time of continuous exposure of binding sites of non-histone proteins (e.g. transcription factors and TATA binding proteins) along any genome. Applying the method to Saccharomyces cerevisiae , we show that the exposure timescales are determined by cooperative dynamics of multiple nucleosomes, and their behavior is often different from expectations based on static nucleosome occupancy. Examining exposure times in the promoters of GAL1 and PHO5, we show that our theoretical predictions are consistent with known experiments. We apply our method genome-wide and discover huge gene-to-gene variability of mean exposure times of TATA boxes and patches adjacent to TSS (+1 nucleosome region); the resulting timescale distributions have non-exponential tails.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-19
    Description: The yeast mutant collections are a fundamental tool in deciphering genomic organization and function. Over the last decade, they have been used for the systematic exploration of ~6 000 000 double gene mutants, identifying and cataloging genetic interactions among them. Here we studied the extent to which these data are prone to neighboring gene effects (NGEs), a phenomenon by which the deletion of a gene affects the expression of adjacent genes along the genome. Analyzing ~90,000 negative genetic interactions observed to date, we found that more than 10% of them are incorrectly annotated due to NGEs. We developed a novel algorithm, GINGER, to identify and correct erroneous interaction annotations. We validated the algorithm using a comparative analysis of interactions from Schizosaccharomyces pombe . We further showed that our predictions are significantly more concordant with diverse biological data compared to their mis-annotated counterparts. Our work uncovered about 9500 new genetic interactions in yeast.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-19
    Description: Transfer RNAs (tRNAs) are essential for encoding the transcribed genetic information from DNA into proteins. Variations in the human tRNAs are involved in diverse clinical phenotypes. Interestingly, all pathogenic variations in tRNAs are located in mitochondrial tRNAs (mt-tRNAs). Therefore, it is crucial to identify pathogenic variations in mt-tRNAs for disease diagnosis and proper treatment. We collected mt-tRNA variations using a classification based on evidence from several sources and used the data to develop a multifactorial probability-based prediction method, PON-mt-tRNA, for classification of mt-tRNA single nucleotide substitutions. We integrated a machine learning-based predictor and an evidence-based likelihood ratio for pathogenicity using evidence of segregation, biochemistry and histochemistry to predict the posterior probability of pathogenicity of variants. The accuracy and Matthews correlation coefficient (MCC) of PON-mt-tRNA are 1.00 and 0.99, respectively. In the absence of evidence from segregation, biochemistry and histochemistry, PON-mt-tRNA classifies variations based on the machine learning method with an accuracy and MCC of 0.69 and 0.39, respectively. We classified all possible single nucleotide substitutions in all human mt-tRNAs using PON-mt-tRNA. The variations in the loops are more often tolerated compared to the variations in stems. The anticodon loop contains comparatively more predicted pathogenic variations than the other loops. PON-mt-tRNA is available at http://structure.bmc.lu.se/PON-mt-tRNA/ .
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-05-06
    Description: Sequence Logos and its variants are the most commonly used method for visualization of multiple sequence alignments (MSAs) and sequence motifs. They provide consensus-based summaries of the sequences in the alignment. Consequently, individual sequences cannot be identified in the visualization and covariant sites are not easily discernible. We recently proposed Sequence Bundles , a motif visualization technique that maintains a one-to-one relationship between sequences and their graphical representation and visualizes covariant sites. We here present Alvis, an open-source platform for the joint explorative analysis of MSAs and phylogenetic trees, employing Sequence Bundles as its main visualization method. Alvis combines the power of the visualization method with an interactive toolkit allowing detection of covariant sites, annotation of trees with synapomorphies and homoplasies, and motif detection. It also offers numerical analysis functionality, such as dimension reduction and classification. Alvis is user-friendly, highly customizable and can export results in publication-quality figures. It is available as a full-featured standalone version ( http://www.bitbucket.org/rfs/alvis ) and its Sequence Bundles visualization module is further available as a web application ( http://science-practice.com/projects/sequence-bundles ).
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-10-14
    Description: Functional RNA regions are often related to recurrent secondary structure patterns (or motifs), which can exert their role in several different ways, particularly in dictating the interaction with RNA-binding proteins, and acting in the regulation of a large number of cellular processes. Among the available motif-finding tools, the majority focuses on sequence patterns, sometimes including secondary structure as additional constraints to improve their performance. Nonetheless, secondary structures motifs may be concurrent to their sequence counterparts or even encode a stronger functional signal. Current methods for searching structural motifs generally require long pipelines and/or high computational efforts or previously aligned sequences. Here, we present BEAM (BEAr Motif finder), a novel method for structural motif discovery from a set of unaligned RNAs, taking advantage of a recently developed encoding for RNA secondary structure named BEAR (Brand nEw Alphabet for RNAs) and of evolutionary substitution rates of secondary structure elements. Tested in a varied set of scenarios, from small- to large-scale, BEAM is successful in retrieving structural motifs even in highly noisy data sets, such as those that can arise in CLIP-Seq or other high-throughput experiments.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...