ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (7)
  • Targeted gene modification  (7)
  • Oxford University Press  (7)
  • American Chemical Society (ACS)
  • Elsevier
  • Frontiers Media
  • PeerJ
  • 2015-2019  (7)
  • 1995-1999
  • 1985-1989
  • 1980-1984
  • 1970-1974
  • 1960-1964
  • 1935-1939
  • 2016  (7)
  • Biology  (7)
  • Education
  • Geography
Collection
  • Journals
  • Articles  (7)
Publisher
  • Oxford University Press  (7)
  • American Chemical Society (ACS)
  • Elsevier
  • Frontiers Media
  • PeerJ
Years
  • 2015-2019  (7)
  • 1995-1999
  • 1985-1989
  • 1980-1984
  • 1970-1974
  • +
Year
Topic
  • Biology  (7)
  • Education
  • Geography
  • 1
    Publication Date: 2016-03-01
    Description: CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are widespread in archaea and bacteria, and research on their molecular mechanisms has led to the development of genome-editing techniques based on a few Type II systems. However, there has not been any report on harnessing a Type I or Type III system for genome editing. Here, a method was developed to repurpose both CRISPR-Cas systems for genetic manipulation in Sulfolobus islandicus , a thermophilic archaeon. A novel type of genome-editing plasmid (pGE) was constructed, carrying an artificial mini-CRISPR array and a donor DNA containing a non-target sequence. Transformation of a pGE plasmid would yield two alternative fates to transformed cells: wild-type cells are to be targeted for chromosomal DNA degradation, leading to cell death, whereas those carrying the mutant gene would survive the cell killing and selectively retained as transformants. Using this strategy, different types of mutation were generated, including deletion, insertion and point mutations. We envision this method is readily applicable to different bacteria and archaea that carry an active CRISPR-Cas system of DNA interference provided the protospacer adjacent motif (PAM) of an uncharacterized PAM-dependent CRISPR-Cas system can be predicted by bioinformatic analysis.
    Keywords: Targeted gene modification
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-20
    Description: The adoptive transfer of engineered T cells for the treatment of cancer, autoimmunity, and infectious disease is a rapidly growing field that has shown great promise in recent clinical trials. Nuclease-driven genome editing provides a method in which to precisely target genetic changes to further enhance T cell function in vivo. We describe the development of a highly efficient method to genome edit both primary human CD8 and CD4 T cells by homology-directed repair at a pre-defined site of the genome. Two different homology donor templates were evaluated, representing both minor gene editing events (restriction site insertion) to mimic gene correction, or the more significant insertion of a larger gene cassette. By combining zinc finger nuclease mRNA delivery with AAV6 delivery of a homologous donor we could gene correct 41% of CCR5 or 55% of PPP1R12C (AAVS1) alleles in CD8 + T cells and gene targeting of a GFP transgene cassette in 〉40% of CD8 + and CD4 + T cells at both the CCR5 and AAVS1 safe harbor locus, potentially providing a robust genome editing tool for T cell-based immunotherapy.
    Keywords: Targeted gene modification
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-20
    Description: CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs, and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy, integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells, and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells.
    Keywords: Targeted gene modification
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-08
    Description: Genome engineering of human cells plays an important role in biotechnology and molecular medicine. In particular, insertions of functional multi-transgene cassettes into suitable endogenous sequences will lead to novel applications. Although several tools have been exploited in this context, safety issues such as cytotoxicity, insertional mutagenesis and off-target cleavage together with limitations in cargo size/expression often compromise utility. Phage integrase (Int) is a transgenesis tool that mediates conservative site-specific integration of 48 kb DNA into a safe harbor site of the bacterial genome. Here, we show that an Int variant precisely recombines large episomes into a sequence, termed att H4X, found in 1000 human Long INterspersed Elements-1 ( LINE-1 ). We demonstrate single-copy transgenesis through att H4X-targeting in various cell lines including hESCs, with the flexibility of selecting clones according to transgene performance and downstream applications. This is exemplified with pluripotency reporter cassettes and constitutively expressed payloads that remain functional in LINE1 -targeted hESCs and differentiated progenies. Furthermore, LINE-1 targeting does not induce DNA damage-response or chromosomal aberrations, and neither global nor localized endogenous gene expression is substantially affected. Hence, this simple transgene addition tool should become particularly useful for applications that require engineering of the human genome with multi-transgenes.
    Keywords: Targeted gene modification
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-20
    Description: Long non-coding RNAs (lncRNAs) have emerged as regulators of gene expression across metazoa. Interestingly, some lncRNAs function independently of their transcripts – the transcription of the lncRNA locus itself affects target genes. However, current methods of loss-of-function analysis are insufficient to address the role of lncRNA transcription from the transcript which has impeded analysis of their function. Using the minimal CRISPR interference (CRISPRi) system, we show that coexpression of the catalytically inactive Cas9 (dCas9) and guide RNAs targeting the endogenous roX locus in the Drosophila cells results in a robust and specific knockdown of roX1 and roX2 RNAs, thus eliminating the need for recruiting chromatin modifying proteins for effective gene silencing. Additionally, we find that the human and Drosophila codon optimized dCas9 genes are functional and show similar transcription repressive activity. Finally, we demonstrate that the minimal CRISPRi system suppresses roX transcription efficiently in vivo resulting in loss-of-function phenotype, thus validating the method for the first time in a multicelluar organism. Our analysis expands the genetic toolkit available for interrogating lncRNA function in situ and is adaptable for targeting multiple genes across model organisms.
    Keywords: Targeted gene modification
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-11-01
    Description: The CRISPR/Cas9 system is a powerful genome editing tool and has been widely used for biomedical research. However, many challenges, such as off-target effects and lack of easy solutions for multiplex targeting, are still limiting its applications. To overcome these challenges, we first developed a highly efficient doxycycline-inducible Cas9-EGFP vector. This vector allowed us to track the cells for uniform temporal control and efficient gene disruption, even in a polyclonal setting. Furthermore, the inducible CRISPR/Cas9 system dramatically decreased off-target effects with a pulse exposure of the genome to the Cas9/sgRNA complex. To target multiple genes simultaneously, we established simple one-step cloning approaches for expression of multiple sgRNAs with improved vectors. By combining our inducible and multiplex genome editing approaches, we were able to simultaneously delete Lysine Demethylase (KDM) 5A, 5B and 5C efficiently in vitro and in vivo . This user friendly and highly efficient toolbox provides a solution for easy genome editing with tight temporal control, minimal off-target effects and multiplex targeting.
    Keywords: Targeted gene modification
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-01
    Description: We describe the development of ‘recCas9’, an RNA-programmed small serine recombinase that functions in mammalian cells. We fused a catalytically inactive dCas9 to the catalytic domain of Gin recombinase using an optimized fusion architecture. The resulting recCas9 system recombines DNA sites containing a minimal recombinase core site flanked by guide RNA-specified sequences. We show that these recombinases can operate on DNA sites in mammalian cells identical to genomic loci naturally found in the human genome in a manner that is dependent on the guide RNA sequences. DNA sequencing reveals that recCas9 catalyzes guide RNA-dependent recombination in human cells with an efficiency as high as 32% on plasmid substrates. Finally, we demonstrate that recCas9 expressed in human cells can catalyze in situ deletion between two genomic sites. Because recCas9 directly catalyzes recombination, it generates virtually no detectable indels or other stochastic DNA modification products. This work represents a step toward programmable, scarless genome editing in unmodified cells that is independent of endogenous cellular machinery or cell state. Current and future generations of recCas9 may facilitate targeted agricultural breeding, or the study and treatment of human genetic diseases.
    Keywords: Targeted gene modification
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...