ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-10-05
    Description: Abstract
    Description: These are maps of artificial night sky radiance that were produced by the Light Pollution Science and Technology Institute (ISTIL), and described in the paper "The New World Atlas of Artificial Night Sky Brightness" (Falchi et al. 2016).The data are stored in a 2.9 Gb geotiff file, on a 30 arcsecond grid. The map reports simulated zenith radiance data in [mcd/m^2]. The map is based on data from the VIIRS Day Night Band (DNB, MIller et al. 2013), which has been propagated through the atmosphere using the radiative transfer code reported in (Cinzano and Falchi, 2012). The upward emission function and the radiance calibration were obtained using data from Sky Quality Meters (including data from Duriscoe et al. 2007; Falchi 2010; Kyba et al 2013, 2015 and Zamorano et al. 2016).Note that the maps report artificial light only! The zenith radiance from natural sources such as stars and the Milky Way are not included, and must be added in order to match the data that would be obtained from an actual outdoor measurement.A kmz file for quick view of the data is also provided. Access to the FTP site to download the data can be requested via the data request form on the landing page.Version History:13 November 2019: change of the licence to CC BY NC 4.0 (after end of embargo period).
    Description: Other
    Description: Artificial lights raise the night sky luminance, creating the most visible effect of light pollution, artificial sky glow. Despite the increasing interest among scientists in fields such as ecology, astronomy, healthcare, land use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, here we present the World atlas of the artificial sky luminance, computed with our light pollution propagation software using new high resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the World and more than 99% of the U.S.A. and Europe populations live under light polluted skies. The Milky Way is hidden for more than one third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of World's lands between 75°N and 60°S, 88% of Europe and almost half of U.S.A. experience light polluted nights.
    Keywords: artificial light ; ALAN ; skyglow ; light pollution ; atlas ; night ; radiative transfer ; Suomi NPP ; Sky Quality Meter ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 VISUALIZATION/IMAGE PROCESSING
    Language: English
    Type: Dataset , Dataset
    Format: 26001739 Bytes
    Format: 1 Files
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-17
    Description: Abstract
    Description: The data set provides GFZ VER11 orbits of altimetry satellitesERS-1 (August 1, 1991 - July 5, 1996),ERS-2 (May 13, 1995 - February 27, 2006),Envisat (April 12, 2002 - April 8, 2012),Jason-1 (January 13, 2002 - July 5, 2013) andJason-2 (July 5, 2008 - April 5, 2015)TOPEX/Poseidon (September 23, 1992 - October 8, 2005),derived at the time spans given at Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences within the Sea Level phase 2 project of the European Space Agency (ESA) Climate Change Initiative using "Earth Parameter and Orbit System - Orbit Computation (EPOS-OC)" software and the Altimeter Database and processing System (ADS, http://adsc.gfz-potsdam.de/ads/) developed at GFZ. The orbits were computed in the same (ITRF2008) terrestrial reference frame for all satellites using common, most precise models and standards available and described below.The ERS-1 orbit is computed using satellite laser ranging (SLR) and altimeter crossover data, while the ERS-2 orbit is derived using additionally Precise Range And Range-rate Equipment (PRARE) measurements. The Envisat, TOPEX/Poseidon, Jason-1 and Jason-2 orbits are based on Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and SLR observations.The orbit files are available in the Extended Standard Product 3 Orbit Format (SP3-c, ftp://igscb.jpl.nasa.gov/igscb/data/format/sp3c.txt) Files are gzip-compressed. File names are given as sate_YYYYMMDD_SP3C.gz, where "sate" is the abbreviation (ENVI, ERS1, ERS2, JAS1, JAS2, TOPX) of the satellite name, YYYY stands for 4-digit year, MM stands for month and DD stands for day of the beginning of the file.More details on these orbits are provided in Rudenko et al. (2017)
    Keywords: Jason-1 ; Jason-2 ; ERS-1 ; ERS-2 ; Envisat ; ESA CCI Sea Level ; Altimetry satellite ; Low Earth Orbit satellites ; sea level ; TOPEX/POSEIDON ; ITRF2008 ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Altimeters 〉 Radar Altimeters ; equipment 〉 artificial satellite 〉 observation satellite ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 SATELLITE ORBITS/REVOLUTION 〉 ORBITAL POSITION ; EARTH SCIENCE 〉 OCEANS 〉 SEA SURFACE TOPOGRAPHY 〉 SEA SURFACE HEIGHT
    Language: English
    Type: Dataset
    Format: 6 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-11
    Description: Abstract
    Description: This data collection contains a multitemporal series of six airborne hyperspectral image mosaics acquired during the growing season of 2012 over the Neusling test area near Landau a.d. Isar in Southern Germany. The airborne hyperspectral data is complemented by accompanying in-situ data acquired parallel to the overflights. The dataset is composed of a) four airborne hyperspectral image mosaics acquired during overflights on April 28th 2012, May 25th 2012, June 16th 2012 and September 8th 2012 with the AVIS-3 imaging spectrometer. The AVIS data consists of 197 spectral bands, ranging from VIS to SWIR (477 - 1704 nm); b) two airborne hyperspectral image mosaics acquired during overflights, which were conducted by the DLR user service OpAiRS (www.dlr.de/opairs) on May 8th 2012 and August 14th 2012 with a HySpex imaging spectrometer. The HySpex data consists of 332 spectral bands, ranging from VIS to SWIR (417 - 2496 nm); c) spatially comprehensive land use/land cover maps generated from in-situ observations for two time-windows during the growing season of 2012 (May and August); d) Flight-parallel in-situ point-measurements consisting of: i) non-destructively measured leaf area index of winter wheat, winter barley, sugar beet, maize and rapeseed (561 measurements incl. standard deviations), ii) SPAD chlorophyll measurements (522 measurements incl. standard deviations), iii) 557 soil moisture measurements incl. standard deviations iv) 539 phenological observations v) 499 measurements of canopy height incl. standard deviations and vi) 38 measurements of plant density. The dataset was collected in order to cover the seasonal dynamics in the development of agricultural crops in Southern Germany.Version History: Correct Acquisition date of the second HySpex flight was August 14th 2012, not August 12th 2012.
    Description: Other
    Description: The Environmental Mapping and Analysis Program (EnMAP) is a German hyperspectral satellite mission that aims at monitoring and characterizing the Earth’s environment on a global scale. EnMAP serves to measure and model key dynamic processes of the Earth’s ecosystems by extracting geochemical, biochemical and biophysical parameters, which provide information on the status and evolution of various terrestrial and aquatic ecosystems. In the frame of the EnMAP preparatory phase, pre-flight campaigns including airborne and in-situ measurements in different environments and for several application fields are being conducted. The main purpose of these campaigns is to support the development of scientific applications for EnMAP. In addition, the acquired data are input in the EnMAP end-to-end simulation tool (EeteS) and are employed to test data pre-processing and calibration-validation methods. The campaign data are made freely available to the scientific community under a Creative Commons Attribution-ShareAlike 4.0 International License. An overview of all available data is provided in in the EnMAP Flight Campaigns Metadata Portal http://www.enmap.org/?q=flights.
    Keywords: Hyperspectral Imagery ; Field Spectroscopy ; Agriculture ; LAI
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-08
    Description: Abstract
    Description: The stress map of Germany shows the orientation of the current maximum horizontal stress (SHmax) in the earth's crust. Assuming that the vertical stress (SV) is a principal stress, SHmax defines the orientation of the 3D stress tensor; the minimum horizontal stress Shmin is than perpendicular to SHmax. In the stress map the SHmax orientations are represented as lines of different lengths. The length of the line is a measure of the quality of data and the symbol shows the stress indicator and the color the stress regime. Data with E-Quality are shown without additional information as dots on the map. The stress data are freely available and part of the World Stress Map (WSM) project. For more information about the data and criteria of data analysis and quality mapping are plotted along the WSM website at http://www.world-stress-map.org.The German version of the World Stress Map Germany is available via http://doi.org/10.5880/WSM.Germany2016.
    Description: Other
    Description: The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale.
    Keywords: crustal stress ; in situ stress ; tectonic stress ; crustal stress pattern ; World Stress Map
    Type: Dataset
    Format: 9901520 Bytes
    Format: 1 Files
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-08
    Description: Abstract
    Description: The stress map of Iceland shows the orientation of the current maximum horizontal stress (SHmax) in the earth's crust. Assuming that the vertical stress (SV) is a principal stress, SHmax defines the orientation of the 3D stress tensor; the minimum horizontal stress Shmin is than perpendicular to SHmax. In the stress map the SHmax orientations are represented as lines of different lengths. The length of the line is a measure of the quality of data and the symbol shows the stress indicator and the color the stress regime. Data with E-Quality are shown without additional information as dots on the map. The stress data are freely available and part of the World Stress Map (WSM) project. For more information about the data and criteria of data analysis and quality mapping are plotted along the WSM website at http://www.world-stress-map.org.
    Description: Other
    Description: The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale.
    Keywords: crustal stress ; in situ stress ; tectonic stress ; crustal stress pattern ; mid ocean ridge
    Language: English
    Type: Dataset , Dataset
    Format: 11932019 Bytes
    Format: 1 Files
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-08
    Description: Abstract
    Description: The Stress Map of the Mediterranean and Central Europe 2016 displays 5011 A-C quality stress data records of the upper 40 km of the Earth’s crust from the WSM database release 2016 (Heidbach et al, 2016, http://doi.org/10.5880/WSM.2016.001). Focal mechanism solutions determined as being potentially unreliable (labelled as Possible Plate Boundary Events in the database) are not displayed. Further detailed information on the WSM quality ranking scheme, guidelines for the various stress indicators, and software for stress map generation and the stress pattern analysis is available at www.world-stress-map.org.
    Description: Other
    Description: The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale.
    Keywords: crustal stress ; in situ stress ; tectonic stress ; crustal stress pattern ; tectonics ; geophysics ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION 〉 PLATE MOTION DIRECTION ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 DATA SEARCH AND RETRIEVAL
    Type: Dataset
    Format: 13765676 Bytes
    Format: 1 Files
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-12-02
    Description: Abstract
    Description: This data pubilcation includes EnMAP-like imaging spectroscopy data files to be used for mineral mapping with the EnMAP BOX software. It is simulated EnMAP satellite data, which is based on hyperspectral flight campaign data with the AVIRIS-NG and HyMap sensors. In preparation of the EnMAP satellite mission, an EnMAP BOX software package provides tools for visualization and scientific analysis of the data. Among many applications, the EnMAP BOX contains geological mapping tools (EnGeoMAP). Here we apply these tools to several representative test cases (Boesche, 2015; Boesche et al. 2016; Mielke et al., 2016). The test data comprise two study sites. The first scene covers the Mountain Pass open pit mine - a carbonatite deposit in California, USA. It contains calcitic rock units and rare earth element (REE) bearing minerals of the bastnaesite group, also called fluorocarbonates (Olson et al., 1954). The REE concentrations at mountain pass are 9.2% on average, among the highest in the world (Brüning and Böhmer, 2011). The high concentration and the open pit activities make Mountain Pass an ideal test site to investigate the rare earth element distribution in the surface layer. The airborne image data were collected in 2014 by Jet Propulsion Laboratory (JPL), USA, with the AVIRIS-NG sensor and form the basis for EnMAP simulations (Segl et al., 2012; Thompson et al., 2015). The second HyMap spectral image data covers part of the Miocene Cabo de Gata Nίjar volcanic field, in southeast Spain. It comprises a subset of (Chabrillat et al., 2016) covering the Rodalquilar and Lomilla Calderas, which host the economically relevant gold-silver, lead-zinc-silver-gold and alunite deposits. It is a hydrothermal alteration complex, representing the silicic alteration, the advanced argillic alteration zone, which grades into the argillic and propylitic zone (Arribas et al., 1995, 1989). The image data are part of the Cabo de Gata Nίjar HyMap imagery which was collected during the DLR HyEurope airborne campaign 2005 in the frame of the GFZ land degradation program (Chabrillat et al., 2016, 2005). We use these datasets to simulate EnMAP-like images for classification and mapping using spectroscopic remote sensing techniques in the EnGeoMAP tools. The EnMAP end-to-end Simulation (EeteS) tool produced simulated EnMAP like data with a spatial sampling distance of 30 x 30 m and 242 spectral bands (Guanter et al., 2015; Segl et al., 2012). File format for both sites: Band Sequential Image Files (*.bsq) and file header (*.hdr). The full description of the datasets is given in the associated data report by Boesche et al. (2016).
    Description: Other
    Description: The Environmental Mapping and Analysis Program (EnMAP) is a German hyperspectral satellite mission that aims at monitoring and characterizing the Earth’s environment on a global scale. EnMAP serves to measure and model key dynamic processes of the Earth’s ecosystems by extracting geochemical, biochemical and biophysical parameters, which provide information on the status and evolution of various terrestrial and aquatic ecosystems. In the frame of the EnMAP preparatory phase, pre-flight campaigns including airborne and in-situ measurements in different environments and for several application fields are being conducted. The main purpose of these campaigns is to support the development of scientific applications for EnMAP. In addition, the acquired data are input in the EnMAP end-to-end simulation tool (EeteS) and are employed to test data pre-processing and calibration-validation methods. The campaign data are made freely available to the scientific community under a Creative Commons Attribution-ShareAlike 4.0 International License. An overview of all available data is provided in in the EnMAP Flight Campaigns Metadata Portal http://www.enmap.org/?q=flights.
    Keywords: Imaging spectroscopy ; Mineral Mapping ; Rare Earth Elements ; EnMAP ; EnGeoMAP ; Simulated Data ; Rodalquilar ; Mountain Pass ; Hyperspectral Imagery ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS 〉 MINERAL PHYSICAL/OPTICAL PROPERTIES 〉 REFLECTION ; mineral resource ; satellite image
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-12-06
    Description: Abstract
    Description: The SLO-VRP2016/Koper quasi-geoid model is the latest height reference surface for Slovenia, referred to the GRS80 ellipsoid. The acronym means SLOvenska Višinska Referenčna Ploskev iz leta 2016, datum Koper (translated in English, Slovenian Height Reference Surface from the year 2016, datum Koper). It was computed by the Surveying and Mapping Authority of the Republic of Slovenia, in cooperation with the Norwegian Mapping Authority (Kartverket). The model is based on a set of old terrestrial gravity data (origin from Yugoslavia, from 1956-75), a set of new Slovenian gravity data (along levelling lines and regional gravimetric survey, from 2000 to 2015) and sets from neighboring countries (Italy, Austria, Hungary and Croatia), altogether 16.400 points in the mean-tide system. Stokes/Molodensky equations and the Fast Fourier transform technique have been applied with use of global geopotential model EGM2008. The computed quasi-geoid surface was adapted (fitted) to 66 high quality GNSS/levelling points, which were fairly distributed throughout the territory of Slovenia. Therefore, the resulting quasi geoid model can be used to perform the conversion between ellipsoidal heights (Slovenian realization of ETRS89 - D96, GRS80 ellipsoid) and normal heights (Slovenian Height System 2010 - SVS2010 with Koper tide gauge). The SLO_VRP2016/Koper model is given in the form of a regular grid, with resolution of 30” × 45”, within the limits of 13° 〈 λ 〈 17° (east of Greenwich) and 45° 〈 φ 〈 47° (north of the equator). In this area geoid heights range between 42.157 m and 50.608 m, with an average of 46.162 m. The inner accuracy of the calculated geoid heights is 2.6 cm, the outer accuracy (based on 871 control GNSS/levelling measurements along levelling lines) is up to 10 cm. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; Slovenia ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-03
    Description: Abstract
    Description: GFZRNX is a software toolbox for Global Navigation Satellite System (GNSS) data provided in the REceiver Independent EXchange format (RINEX) of the major versions 2 and 3. The following RINEX data types are supported: - Observation data - Navigation data - Meteorological dataThe following global and regional satellite systems are supported:GPS - Global Positioning System (USA) GLONASS - GLObal NAvigation Satellite System (RUS)BEIDOU - Chinese Global and Regional Navigation Satellite System (CHN)GALILEO - European Global Navigation Satellite SystemIRNSS - Indian Regional Naviagation Satellite System (IND)QZSS - Quasi Zenith Satellite System (JAP) The following operations/tasks are supported: - RINEX data check and repair - RINEX data format conversion ( version 3 to 2 and vice versa ) - RINEX data splice - RINEX data split - RINEX data statistics generation - RINEX data manipulations like: (1) data sampling, (2) observation types selection, (3) satellite systems selection, (4) elimination of overall empty or sparse observation types - Automatic version dependent file naming on output data - RINEX data header editing - RINEX data meta data extraction - RINEX data comparisonThe following operating systems are supported: - Microsoft Windows (64) - Microsoft Windows (32) - Apple macOS - ORACLE Solaris (SPARC) - ORACLE Solaris (i86) - Linux (64) - Linux (32) Please find the executables and the Documentation via: http://semisys.gfz-potsdam.de/semisys/scripts/download/index.php (GFZ Software -〉 gfzrnx)
    Keywords: RINEX ; GNSS ; GPS ; GLONASS ; GALILEO ; BEIDOU ; QZSS ; IRNSS
    Type: Software
    Format: 674121 Bytes
    Format: 3 Files
    Format: application/octet-stream
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-03
    Description: Abstract
    Description: HUST-Grace2016 is a new time series of monthly gravity field models up to degree and order 60. The new HUST-Grace2016s is a new GRACE-only static gravity field model up to degree and order 160. Using about 13 years of GRACE Level 1B data spanning from January 2003 to April 2015. This new model has been developed by the institute of geophysics in the Huazhong University of Science and Technology (HUST). No constraint was applied. More details about our HUST-Grace2016s will be given in our paper “HUST-Grace2016s: a new GRACE static gravity field model derived from a modified dynamic approach over a 13-year observation period” (submitted to JGR Solid Earth in November 2016).This work is supported by the National Natural Science Foundation of China (No. 41131067, 41374023, 41474019), the Project funded by China Postdoctoral Science Foundation (No. 2016M592337).
    Description: Other
    Description: Input Data:- GRACE RL02 L1B (JPL) data products: January 2003 – March 2016- ITSG kinematic orbits: January 2003 – April 2015- AOD1B RL05 (GFZ) idealizing productCalculation method:- modified dynamic approach- numerical integrator: 14th-order Gauss-Jackson integrator- arc length: 24 hours- arc step: 5 secondsForce models:- Earth’s static gravity field: GGM05s up to degree and order 180- Ocean tides: EOT11a, truncated up to degree and order 120- N-body Perturbation: Direct and indirect J2 effects with JPL DE421- Solid earth tides: frequency independent/dependent terms, permanent tide- Solid earth tides: frequency independent/dependent terms, permanent tide- Pole tides: solid earth pole tides from IERS 2010, and ocean pole tides from Desai- Atmosphere and Oceanic variability: The AOD1B RL05 model up to degree 100- General Relativistic effects: IERS 2010
    Keywords: monthly gravity field model ; ICGEM ; geodesy
    Language: English
    Type: Dataset , Dataset
    Format: 1 Files
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...