ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: bacteriophages ; environmental disturbance ; phage ecology ; aquatic microbiology ; phage therapy ; metaviromes ; evolution ; microarrays ; microbiology
    Description / Table of Contents: Viruses infect numerous microorganisms including, predominantly, Bacteria (bacteriophages or phages) but also Archaea, Protists, and Fungi. They are the most abundant and ubiquitous biological entities on Earth and are important drivers of ecosystem functioning. Little is known, however, about the vast majority of these viruses of microorganisms, or VoMs. Modern techniques such as metagenomics have enabled the discovery and description of more presumptive VoMs than ever before, but also have exposed gaps in our understanding of VoM ecology. Exploring the ecology of these viruses – which is how they interact with host organisms, the abiotic environment, larger organisms, and even other viruses across a variety of environments and conditions – is the next frontier. Integration of a growing molecular understanding of VoMs with ecological studies will expand our knowledge of ecosystem dynamics. Ecology can be studied at multiple levels including individual organisms, populations, communities, whole ecosystems, and the entire biosphere. Ecology additionally can consider normal, equilibrium conditions or instead perturbations. Perturbations are of particular interest because measuring the effect of disturbances on VoM-associated communities provides important windows into how VoMs contribute to ecosystem dynamics. These disturbances in turn can be studied through in vitro, in vivo, and in situ experimentation, measuring responses by VoM-associated communities to changes in nutrient availability, stress, physical disruption, seasonality, etc., and could apply to studies at all ecological levels. These are considered here across diverse systems and environments.
    Pages: Online-Ressource (95 Seiten)
    ISBN: 9782889194483
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Royal Society
    Publication Date: 2015-10-01
    Keywords: evolution
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-31
    Description: Social insects such as ants have evolved collective rather than individual immune defence strategies against diseases and parasites at the level of their societies (colonies), known as social immunity. Ants frequently host other arthropods, so-called myrmecophiles, in their nests. Here, we tested the hypothesis that myrmecophily may partly arise from selection for exploiting the ants’ social immunity. We used larvae of the wax moth Galleria mellonella as ‘model myrmecophiles’ (baits) to test this hypothesis. We found significantly reduced abundance of entomopathogens in ant nests compared with the surrounding environment. Specific entomopathogen groups ( Isaria fumosorosea and nematodes) were also found to be significantly less abundant inside than outside ant nests, whereas one entomopathogen ( Beauveria brongniartii ) was significantly more abundant inside nests. We therefore hypothesize that immunological benefits of entering ant nests may provide us a new explanation of why natural selection acts in favour of such a life-history strategy.
    Keywords: evolution
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-28
    Description: Seasonally fluctuating water levels, known as ‘flood pulses’, control the productivity of large river fisheries, but the extent and mechanisms through which flood pulses affect fishery yields are poorly understood. To quantify and better understand flood pulse effects on fishery yields, this study applied regression techniques to a hydrological and fishery record (years 1993–2004) for 42 species of the Amazon River floodplains. Models based on indices of fishing effort, high waters and low waters explained most of the interannual variability in yields ( R 2 =0.8). The results indicated that high and low waters in any given year affected fishery yields two and three years later through changes in fish biomass available for harvesting, contributing 18% of the explained variability in yields. Fishing effort appeared to amplify high and low water effects by changing in direct proportion to changes in fish biomass available for harvesting, contributing 62% of the explained variability in yields. Although high waters are generally expected to have greater relative influence on fishery yields than low waters, high and low waters exerted equal forcing on these Amazonian river-floodplain fishery yields. These findings highlight the complex dynamics of river-floodplain fisheries in relation to interannual variability in flood pulses.
    Keywords: ecology, environmental science
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-01
    Description: Conservation management agencies are faced with acute trade-offs when dealing with disturbance from human activities. We show how agencies can respond to permanent ecosystem disruption by managing for Pimm resilience within a conservation budget using a model calibrated to a metapopulation of a coral reef fish species at Ningaloo Reef, Western Australia. The application is of general interest because it provides a method to manage species susceptible to negative environmental disturbances by optimizing between the number and quality of migration connections in a spatially distributed metapopulation. Given ecological equivalency between the number and quality of migration connections in terms of time to recover from disturbance, our approach allows conservation managers to promote ecological function, under budgetary constraints, by offsetting permanent damage to one ecological function with investment in another.
    Keywords: ecology, environmental science
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...