ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
  • Wiley-Blackwell  (1)
  • American Physical Society
  • Cell Press
  • Hamburg: Verlag Weltarchiv
  • 2015-2019  (1)
  • 1950-1954
  • 2015  (1)
Collection
Publisher
Years
  • 2015-2019  (1)
  • 1950-1954
Year
  • 1
    Publication Date: 2020-02-24
    Description: Metal-catalysed CO2 hydrogenation is considered a source of methane in serpentinized (hydrated) igneous rocks and a fundamental abiotic process germane to the origin of life. Iron, nickel, chromium and cobalt are the catalysts typically employed in hydrothermal simulation experiments to obtain methane at temperatures 〉200°C. However, land-based present-day serpentinization and abiotic gas apparently develop below 100°C, down to approximately 40–50°C. Here, we document considerable methane production in thirteen CO2 hydrogenation experiments performed in a closed dry system, from 20 to 90°C and atmospheric pressure, over 0.9–122 days, using concentrations of non-pretreated ruthenium equivalent to those occurring in chromitites in ophiolites or igneous complexes (from 0.4 to 76 mg of Ru, equivalent to the amount occurring approximately in 0.4–760 kg of chromitite). Methane production increased with time and temperature, reaching approximately 87 mg CH4 per gram of Ru after 30 days (2.9 mgCH4/gru/day) at 90°C. At room temperature, CH4 production rate was approximately three orders of magnitude lower (0.003 mgCH4/gru/day). We report the first stable carbon and hydrogen isotope ratios of abiotic CH4 generated below 100°C. Using initial d13CCO2 of -40&, we obtained room temperature d13CCH4 values as 13C depleted as 142&. With time and temperature, the C-isotope separation between CO2 and CH4 decreased significantly and the final d13CCH4 values approached that of initial d13CCO2. The presence of minor amounts of C2-C6 hydrocarbons is consistent with observations in natural settings. Comparative experiments at the same temperatures with iron and nichel catalysts did not generate CH4. Ru-enriched chromitites could potentially generate methane at low temperatures on Earth and on other planets.
    Description: Published
    Description: 438–452
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: restricted
    Keywords: abiotic methane, Sabatier reaction ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...